Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】

yipeiwu_com6年前Python基础

本文实例讲述了Python实现正弦信号的时域波形和频谱图。分享给大家供大家参考,具体如下:

# -*- coding: utf-8 -*-
# 正弦信号的时域波形与频谱图
import numpy as np
import matplotlib.pyplot as pl
import matplotlib
import math
import random
row = 4
col = 4
N = 500
fs = 5
n = [2*math.pi*fs*t/N for t in range(N)]  # 生成了500个介于0.0-31.35之间的点
# print n
axis_x = np.linspace(0,3,num=N)
#频率为5Hz的正弦信号
x = [math.sin(i) for i in n]
pl.subplot(221)
pl.plot(axis_x,x)
pl.title(u'5Hz的正弦信号',fontproperties='SimHei')
pl.axis('tight')
#频率为5Hz、幅值为3的正弦+噪声
x1 = [random.gauss(0,0.5) for i in range(N)]
xx = []
#有没有直接两个列表对应项相加的方式??
for i in range(len(x)):
  xx.append(x[i]*3 + x1[i])
pl.subplot(222)
pl.plot(axis_x,xx)
pl.title(u'频率为5Hz、幅值为3的正弦+噪声',fontproperties='SimHei')
pl.axis('tight')
#频谱绘制
xf = np.fft.fft(x)
xf_abs = np.fft.fftshift(abs(xf))
axis_xf = np.linspace(-N/2,N/2-1,num=N)
pl.subplot(223)
pl.title(u'频率为5Hz的正弦频谱图',fontproperties='SimHei')
pl.plot(axis_xf,xf_abs)
pl.axis('tight')
#频谱绘制
xf = np.fft.fft(xx)
xf_abs = np.fft.fftshift(abs(xf))
pl.subplot(224)
pl.title(u'频率为5Hz的正弦频谱图',fontproperties='SimHei')
pl.plot(axis_xf,xf_abs)
pl.axis('tight')
pl.show()

运行效果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python 代码性能优化技巧分享

Python 代码性能优化技巧分享

如何进行 Python 性能优化,是本文探讨的主要问题。本文会涉及常见的代码优化方法,性能优化工具的使用以及如何诊断代码的性能瓶颈等内容,希望可以给 Python 开发人员一定的参考。...

django与小程序实现登录验证功能的示例代码

之前用小程序做项目,因为后台使用的java开发,一切顺利,但切换成django做RESTful API接口时,在登陆注册时一直出现问题,网上搜索,借助一个网友的回答,找到了一种可行的解决...

Python logging设置和logger解析

Python logging设置和logger解析

一、logging模块讲解 1.函数:logging.basicConfig() 参数讲解: (1)level代表高于或者等于这个值时,那么我们才会记录这条日志 (2)filename代...

Python引用类型和值类型的区别与使用解析

Python数据类型分为值类型和引用类型, 下面我们看下它们的区别: 值类型: 对象本身不允许修改,数值的修改实际上是让变量指向了一个新的对象 包含:字符串、元组、数值,本身不允许被修改...

python2与python3中关于对NaN类型数据的判断和转换方法

python2与python3中关于对NaN类型数据的判断和转换方法

今天在对一堆新数据进行数据清洗的时候,遇到了一个这样的问题: ValueError: cannot convert float NaN to integer 一开始是这样的,我用...