对Python中gensim库word2vec的使用详解

yipeiwu_com5年前Python基础

pip install gensim安装好库后,即可导入使用:

1、训练模型定义

from gensim.models import Word2Vec 
model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4) 

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

详细参数说明可查看word2vec源代码。

2、训练后的模型保存与加载

model.save(fname) 
model = Word2Vec.load(fname) 

3、模型使用(词语相似度计算等)

model.most_similar(positive=['woman', 'king'], negative=['man']) 
#输出[('queen', 0.50882536), ...] 
 
model.doesnt_match("breakfast cereal dinner lunch".split()) 
#输出'cereal' 
 
model.similarity('woman', 'man') 
#输出0.73723527 
 
model['computer'] # raw numpy vector of a word 
#输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32) 

其它内容不再赘述,详细请参考gensim的word2vec的官方说明,里面讲的很详细。

以上这篇对Python中gensim库word2vec的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pycharm配置pyqt5-tools开发环境的方法步骤

pycharm配置pyqt5-tools开发环境的方法步骤

本文介绍使用python+pyqt5开发桌面程序的一个可视化UI视图布局 一、环境包的安装 1、如果还不知道虚拟环境的可以参考,或者直接使用pipenv 2、安装pyqt5 pip3...

Python面向对象之类和对象属性的增删改查操作示例

本文实例讲述了Python面向对象之类和对象属性的增删改查操作。分享给大家供大家参考,具体如下: 一、类属性的操作 # -*- coding:utf-8 -*- #! python2...

Python yield与实现方法代码分析

yield的功能类似于return,但是不同之处在于它返回的是生成器。 生成器 生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭代器不一定是生成器)...

python获取指定时间差的时间实例详解

python获取指定时间差的时间实例详解 在分析数据的时间经常需要截取一定范围时间的数据,比如三天之内,两小时前等等时间要求的数据,因此将该部分经常需要用到的功能模块化,方便以后以后用到...

Python实现列表删除重复元素的三种常用方法分析

本文实例讲述了Python实现列表删除重复元素的三种常用方法。分享给大家供大家参考,具体如下: 给定一个列表,要求删除列表中重复元素。 listA = ['python','语','...