对Python中gensim库word2vec的使用详解

yipeiwu_com6年前Python基础

pip install gensim安装好库后,即可导入使用:

1、训练模型定义

from gensim.models import Word2Vec 
model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4) 

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

详细参数说明可查看word2vec源代码。

2、训练后的模型保存与加载

model.save(fname) 
model = Word2Vec.load(fname) 

3、模型使用(词语相似度计算等)

model.most_similar(positive=['woman', 'king'], negative=['man']) 
#输出[('queen', 0.50882536), ...] 
 
model.doesnt_match("breakfast cereal dinner lunch".split()) 
#输出'cereal' 
 
model.similarity('woman', 'man') 
#输出0.73723527 
 
model['computer'] # raw numpy vector of a word 
#输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32) 

其它内容不再赘述,详细请参考gensim的word2vec的官方说明,里面讲的很详细。

以上这篇对Python中gensim库word2vec的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

本文实例讲述了Python机器学习k-近邻算法。分享给大家供大家参考,具体如下: 工作原理 存在一份训练样本集,并且每个样本都有属于自己的标签,即我们知道每个样本集中所属于的类别。输入没...

python机器人行走步数问题的解决

本文实例为大家分享了python机器人行走步数问题,供大家参考,具体内容如下 #! /usr/bin/env python3 # -*- coding: utf-8 -*- #...

Pytorch 实现数据集自定义读取

以读取VOC2012语义分割数据集为例,具体见代码注释: VocDataset.py from PIL import Image import torch import torch....

python实现大文件分割与合并

很多时候我们会面临大文件无法加载到内存,或者要传输大文件的问题。这时候就需要考虑将大文件分割为小文件进行处理了。 下面是一种用python分割与合并分件的实现。 import o...

python Tkinter版学生管理系统

python Tkinter版学生管理系统

本文实例为大家分享了python Tkinter版学生管理的具体代码,供大家参考,具体内容如下 Tkinter是python自带的UI包,无需下载,只需要导入 tkinter 文档 //...