对Python中gensim库word2vec的使用详解

yipeiwu_com6年前Python基础

pip install gensim安装好库后,即可导入使用:

1、训练模型定义

from gensim.models import Word2Vec 
model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4) 

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

详细参数说明可查看word2vec源代码。

2、训练后的模型保存与加载

model.save(fname) 
model = Word2Vec.load(fname) 

3、模型使用(词语相似度计算等)

model.most_similar(positive=['woman', 'king'], negative=['man']) 
#输出[('queen', 0.50882536), ...] 
 
model.doesnt_match("breakfast cereal dinner lunch".split()) 
#输出'cereal' 
 
model.similarity('woman', 'man') 
#输出0.73723527 
 
model['computer'] # raw numpy vector of a word 
#输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32) 

其它内容不再赘述,详细请参考gensim的word2vec的官方说明,里面讲的很详细。

以上这篇对Python中gensim库word2vec的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

前言 最近参加了大创项目,题目涉及到计算机视觉,学姐发了个修正图像的博客链接,于是打算用这个题目入门OpenCV。 分析问题 照片中的PPT区域总是沿着x,y,z三个轴都有倾斜(如下图)...

解决安装tensorflow遇到无法卸载numpy 1.8.0rc1的问题

最近在关注 Deep Learning,就在自己的mac上安装google的开源框架Tensorflow 用 sudo pip install -U tensorflow 安装的时候总...

python安装gdal的两种方法

1.不用手动下载文件,直接执行以下命令即可 conda install gdal 2.首先,下载gdal的whl文件  链接, 官网下载比较慢,GDAL-2.2.4-cp27-...

pymysql模块的操作实例

pymysql 模块! pymysql模块时一个第三方模块!需要下载: pymysql的基本使用: import pymysql conn = pymysql.connect(...

Python将视频或者动态图gif逐帧保存为图片的方法

本文是基于opencv将视频和动态图gif保存为图像帧。可以根据输入视频格式的不同,修改第21行。        对动图的处理...