Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法

yipeiwu_com6年前Python基础

前言

跳台阶、变态跳台阶、矩形覆盖其实都和斐波那契数列是一类问题,文中通过示例代码介绍的非常详细,下面话不多说了,来一起看看详细的介绍吧。

跳台阶

问题描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

初始值很容易得到,当n > 2时,跳上n级台阶最后一步无外乎两种情况,从第n-1级跳一级跳上来,或是从第n-2级跳2级跳上来,因此很容易得到如下递归公式。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)(n > 2)

代码:

def jump_floor(number):
 if number <= 2:
  return number
 prev, curr = 1, 2
 for _ in range(3, number+1):
  prev, curr = curr, prev+curr
 return curr

变态跳台阶

问题描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

相比上一个跳台阶,这次可以从任意台阶跳上第n级台阶,也可以直接跳上第n级。因此其递归公式为各个台阶之和再加上直接跳上去的一种情况。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)+ … + F(2)+ F(1)+ 1 = 2 **(n-1)

代码:

def jump_floor(number):
 if number == 0:
  return 0
 return 2**(number-1)

矩形覆盖

问题描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析:

仔细分析这个问题实际上就是普通的跳台阶问题。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)(n > 2)

代码:

def jump_floor(number):
 if number <= 2:
  return number
 prev, curr = 1, 2
 for _ in range(3, number+1):
  prev, curr = curr, prev+curr
 return curr

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

在NumPy中创建空数组/矩阵的方法

如何在NumPy中创建空数组/矩阵? 在添加行的情况下,你最好的选择是创建一个与数据集最终一样大的数组,然后向它添加数据 row-by-row: >>> impo...

python版本的仿windows计划任务工具

python版本的仿windows计划任务工具

计划任务工具-windows 计划任务工具根据自己设定的具体时间,频率,命令等属性来规定所要执行的计划。 效果图 代码 # -*- coding: utf-8 -*- """ M...

python批量图片处理简单示例

本文实例讲述了python批量图片处理。分享给大家供大家参考,具体如下: #!/usr/bin/python #coding:utf-8 import os from PIL imp...

在Python中使用Neo4j数据库的教程

在Python中使用Neo4j数据库的教程

 一个快速的REST例子 首先来看些基本知识。如果没有服务API,Neo4j就不能支持其他语言。该接口提供一组基于JSON消息格式的RESTful Web服务和一个全面的发现机...

给Python入门者的一些编程建议

Python是一种非常富有表现力的语言。它为我们提供了一个庞大的标准库和许多内置模块,帮助我们快速完成工作。然而,许多人可能会迷失在它提供的功能中,不能充分利用标准库,过度重视单行脚本,...