详解Pytorch 使用Pytorch拟合多项式(多项式回归)

yipeiwu_com5年前Python基础

使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰。

希望通过实战几个Pytorch的例子,让大家熟悉Pytorch的使用方法,包括数据集创建,各种网络层结构的定义,以及前向传播与权重更新方式。

比如这里给出

    

很显然,这里我们只需要假定

这里我们只需要设置一个合适尺寸的全连接网络,根据不断迭代,求出最接近的参数即可。

但是这里需要思考一个问题,使用全连接网络结构是毫无疑问的,但是我们的输入与输出格式是什么样的呢?

只将一个x作为输入合理吗?显然是不合理的,因为每一个神经元其实模拟的是wx+b的计算过程,无法模拟幂运算,所以显然我们需要将x,x的平方,x的三次方,x的四次方组合成一个向量作为输入,假设有n个不同的x值,我们就可以将n个组合向量合在一起组成输入矩阵。

这一步代码如下:

def make_features(x): 
 x = x.unsqueeze(1) 
 return torch.cat([x ** i for i in range(1,4)] , 1) 

我们需要生成一些随机数作为网络输入:

def get_batch(batch_size=32): 
 random = torch.randn(batch_size) 
 x = make_features(random) 
 '''Compute the actual results''' 
 y = f(x) 
 if torch.cuda.is_available(): 
  return Variable(x).cuda(), Variable(y).cuda() 
 else: 
  return Variable(x), Variable(y) 

其中的f(x)定义如下:

w_target = torch.FloatTensor([0.5,3,2.4]).unsqueeze(1) 
b_target = torch.FloatTensor([0.9]) 
 
def f(x): 
 return x.mm(w_target)+b_target[0] 

接下来定义模型:

class poly_model(nn.Module): 
 def __init__(self): 
  super(poly_model, self).__init__() 
  self.poly = nn.Linear(3,1) 
 
 def forward(self, x): 
  out = self.poly(x) 
  return out 
if torch.cuda.is_available(): 
 model = poly_model().cuda() 
else: 
 model = poly_model() 

接下来我们定义损失函数和优化器:

criterion = nn.MSELoss() 
optimizer = optim.SGD(model.parameters(), lr = 1e-3) 

网络部件定义完后,开始训练:

epoch = 0 
while True: 
 batch_x,batch_y = get_batch() 
 output = model(batch_x) 
 loss = criterion(output,batch_y) 
 print_loss = loss.data[0] 
 optimizer.zero_grad() 
 loss.backward() 
 optimizer.step() 
 epoch+=1 
 if print_loss < 1e-3: 
  break 

到此我们的所有代码就敲完了,接下来我们开始详细了解一下其中的一些代码。

在make_features()定义中,torch.cat是将计算出的向量拼接成矩阵。unsqueeze是作一个维度上的变化。

get_batch中,torch.randn是产生指定维度的随机数,如果你的机器支持GPU加速,可以将Variable放在GPU上进行运算,类似语句含义相通。

x.mm是作矩阵乘法。

模型定义是重中之重,其实当你掌握Pytorch之后,你会发现模型定义是十分简单的,各种基本的层结构都已经为你封装好了。所有的层结构和损失函数都来自torch.nn,所有的模型构建都是从这个基类 nn.Module继承的。模型定义中,__init__与forward是有模板的,大家可以自己体会。

nn.Linear是做一个线性的运算,参数的含义代表了输入层与输出层的结构,即3*1;在训练阶段,有几行是Pytorch不同于别的框架的,首先loss是一个Variable,通过loss.data可以取出一个Tensor,再通过data[0]可以得到一个int或者float类型的值,我们才可以进行基本运算或者显示。每次计算梯度之前,都需要将梯度归零,否则梯度会叠加。个人觉得别的语句还是比较好懂的,如果有疑问可以在下方评论。

下面是我们的拟合结果

其实效果肯定会很好,因为只是一个非常简单的全连接网络,希望大家通过这个小例子可以学到Pytorch的一些基本操作。往后我们会继续更新,完整代码请戳,https://github.com/ZhichaoDuan/PytorchCourse

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python多进程共享变量

本文实例为大家分享了python多进程共享变量的相关代码,供大家参考,具体内容如下 from multiprocessing import Process, Manager impo...

Python之pymysql的使用小结

在python3.x中,可以使用pymysql来MySQL数据库的连接,并实现数据库的各种操作,本次博客主要介绍了pymysql的安装和使用方法。  PyMySQL的安装 一、...

python使用标准库根据进程名如何获取进程的pid详解

前言 标准库是Python的一个组成部分。这些标准库是Python为你准备好的利器,可以让编程事半功倍。特别是有时候需要获取进程的pid,但又无法使用第三方库的时候。下面话不多说了,来一...

为什么入门大数据选择Python而不是Java?

为什么入门大数据选择Python而不是Java?

马云说:“未来最大的资源就是数据,不参与大数据十年后一定会后悔。”毕竟出自wuli马大大之口,今年二月份我开始了学习大数据的道路,直到现在对大数据的学习脉络和方法也渐渐清晰。今天我们就来...

python函数形参用法实例分析

本文实例讲述了python函数形参用法。分享给大家供大家参考。具体如下: 函数形参: 函数取得的参数是你提供给函数的值,这样函数就可以利用这些值 做 一些事情。这些参数就像变量一样,只不...