基于python3 OpenCV3实现静态图片人脸识别

yipeiwu_com6年前Python基础

本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联。

首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行百度。

创建一个识别人脸的函数detect()

def detect(img):
 #函数声明了一个face_cascade的变量,该变量为CascadeClassifier的对象,用于检测人脸(frontalface)
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 #进行灰度化处理
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 #进行实际的人脸检测,传递参数是scaleFactor和minNeighbor,分别表示人脸检测过程中每次迭代时图像的压缩率和每个人脸矩形保留近邻数目的最小值
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 #依次提取faces变量中的值来画矩形
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 #避免图形窗口关闭
 cv2.waitKey(0)

上面就是主要的函数,当然你也可以不用函数,直接写在while循环里面,下面是完整的程序代码

import cv2

filename = cv2.imread('face_2.jpg')

def detect(img):
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 cv2.waitKey(0)

if __name__ == "__main__":
 detect(filename)

运行结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3实现将文件树中所有文件和子目录归档到tar压缩文件的方法

本文实例讲述了Python3实现将文件树中所有文件和子目录归档到tar压缩文件的方法。分享给大家供大家参考。具体实现方法如下: # 这里将一个文件树中的所有文件和子目录归档到一个ta...

Django项目使用CircleCI的方法示例

Django项目使用CircleCI的方法示例

自从认识了 CircleCI 之后,基本上都在用这个了。相比于之前用的travis-ci ,CircleCI 丑是丑了点,但是相比与 travis 有几点好处: CircleCI...

Python DataFrame.groupby()聚合函数,分组级运算

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分panda...

Python中optparse模块使用浅析

Python中optparse模块使用浅析

最近遇到一个问题,是指定参数来运行某个特定的进程,这很类似Linux中一些命令的参数了,比如ls -a,为什么加上-a选项会响应。optparse模块实现的也是类似的功能,它是为脚本传递...

Python集合基本概念与相关操作实例分析

本文实例讲述了Python集合基本概念与相关操作。分享给大家供大家参考,具体如下: 集合的概念 集合是无序可变,元素不能重复。实际上,集合底层是字典实现,集合的所有元素都是字典 中的“键...