基于python3 OpenCV3实现静态图片人脸识别

yipeiwu_com5年前Python基础

本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联。

首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行百度。

创建一个识别人脸的函数detect()

def detect(img):
 #函数声明了一个face_cascade的变量,该变量为CascadeClassifier的对象,用于检测人脸(frontalface)
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 #进行灰度化处理
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 #进行实际的人脸检测,传递参数是scaleFactor和minNeighbor,分别表示人脸检测过程中每次迭代时图像的压缩率和每个人脸矩形保留近邻数目的最小值
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 #依次提取faces变量中的值来画矩形
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 #避免图形窗口关闭
 cv2.waitKey(0)

上面就是主要的函数,当然你也可以不用函数,直接写在while循环里面,下面是完整的程序代码

import cv2

filename = cv2.imread('face_2.jpg')

def detect(img):
 face_cascade = cv2.CascadeClassifier('./cascades/haarcascade_frontalface_default.xml')
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray,1.3,5)
 for (x,y,w,h) in faces:
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
 cv2.imshow('face_track',img)
 cv2.waitKey(0)

if __name__ == "__main__":
 detect(filename)

运行结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

wxPython中listbox用法实例详解

本文实例讲述了wxPython中listbox用法。分享给大家供大家参考。具体如下: # load a listbox with names, select a name and d...

python中requests库session对象的妙用详解

在进行接口测试的时候,我们会调用多个接口发出多个请求,在这些请求中有时候需要保持一些共用的数据,例如cookies信息。 妙用1 requests库的session对象能够帮我们跨请...

Python Sqlite3以字典形式返回查询结果的实现方法

sqlite3本身并没有像pymysql一样原生提供字典形式的游标。 cursor = conn.cursor(pymysql.cursors.DictCursor) 但官方文...

python面向对象入门教程之从代码复用开始(一)

前言 本文从代码复用的角度一步一步演示如何从python普通代码进化到面向对象,并通过代码去解释一些面向对象的理论。所以,本文前面的内容都是非面向对象的语法实现方式,只有在最结尾才给出了...

python并发编程 Process对象的其他属性方法join方法详解

一 Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一: 在主进程的任务与子进程的任...