使用python进行文本预处理和提取特征的实例

yipeiwu_com5年前Python基础

如下所示:

<strong><span style="font-size:14px;">文本过滤</span></strong> 
result = re.sub(r'[^\u4e00-\u9fa5,。?!,、;:“ ”‘ '( )《 》〈 〉]', "", content)#只保留中文和标点 

result = re.sub(r'[^\u4e00-\u9fa5]', "",content)#只保留中文 
result = re.sub(r'[^\0-9\.\u4e00-\u9fa5,。?!,、;:“ ”‘ '( )《 》〈 〉]', "", content)#只保留中文和标点和数字 
result = re.sub(r'[^\u4e00-\u9fa5,A-Za-z0-9]', "",content)#只保留中文、英文和数字 

文本去除两个以上空格

content=re.sub(r'\s{2,}', '', content)

bas4编码变成中文

def bas4_decode(bas4_content): 
 decodestr= base64.b64decode(bas4_content) 
 result = re.sub(r'[^\0-9\.\u4e00-\u9fa5,。?!,、;:“ ”‘ '( )《 》〈 〉]', "", decodestr.decode())#只保留中文和标点和数字 
 return result 

文本去停用词

def text_to_wordlist(text): 
 result = re.sub(r'[^\u4e00-\u9fa5]', "",text) 
 f1_seg_list = jieba.cut(result)#需要添加一个词典,来弥补结巴分词中没有的词语,从而保证更高的正确率 
 f_stop = codecs.open(".\stopword.txt","r","utf-8") 
 try: 
  f_stop_text = f_stop.read() 
 finally: 
  f_stop.close() 
 f_stop_seg_list = f_stop_text.split() 
 
 test_words = [] 
 
 for myword in f1_seg_list: 
  if myword not in f_stop_seg_list: 
   test_words.append(myword) 
    
 return test_words 

文本特征提取

import jieba 
import jieba.analyse 
import numpy as np 
#import json 
import re

def Textrank(content):
 result = re.sub(r'[^\u4e00-\u9fa5]', "",content)
 seg = jieba.cut(result) 
 jieba.analyse.set_stop_words('stopword.txt')
 keyList=jieba.analyse.textrank('|'.join(seg), topK=10, withWeight=False) 
 return keyList

def TF_IDF(content):
 result = re.sub(r'[^\u4e00-\u9fa5]', "",content)
 seg = jieba.cut(result) 
 jieba.analyse.set_stop_words('stopword.txt')
 keyWord = jieba.analyse.extract_tags( 
  '|'.join(seg), topK=10, withWeight=False, allowPOS=())#关键词提取,在这里对jieba的tfidf.py进行了修改 
 return keyWord

以上这篇使用python进行文本预处理和提取特征的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python自动化部署工具Fabric的简单上手指南

Fabric 是基于 SSH 协议的 Python 工具,相比传统的 ssh/scp 方式,用 Python 的语法写管理命令更易读也更容易扩展,管理单台或者多台机器犹如本地操作一般。...

python创建学生管理系统

python创建学生管理系统

使用python创建学生管理系统,供大家参考,具体内容如下 创建学生管理系统,可谓是学习编程最基础的一小步。 主要是分为以下几个思路: 接下来直接上源码 #!/usr/bin/py...

Python制作词云图代码实例

Python制作词云图代码实例

词云图是将词汇按照频率的高低显示不同大小而形成的图,可以一目了然地看出关键词。下面是词云图的python代码~ #导入需要模块 import jieba import numpy a...

利用一个简单的例子窥探CPython内核的运行机制

我最近花了一些时间在探索CPython,并且我想要在这里分享我的一些冒险经历。Allison Kaptur的excellent guide to getting started with...

pytorch 实现将自己的图片数据处理成可以训练的图片类型

为了使用自己的图像数据,需要仿照pytorch数据输入创建新的类,其中数据格式为numpy.ndarray。 将自己的图片保存到numpy.ndarray中,然后创建类 from t...