spark: RDD与DataFrame之间的相互转换方法

yipeiwu_com6年前Python基础

DataFrame是一个组织成命名列的数据集。它在概念上等同于关系数据库中的表或R/Python中的数据框架,但其经过了优化。DataFrames可以从各种各样的源构建,例如:结构化数据文件,Hive中的表,外部数据库或现有RDD。

DataFrame API 可以被Scala,Java,Python和R调用。

在Scala和Java中,DataFrame由Rows的数据集表示。

在Scala API中,DataFrame只是一个类型别名Dataset[Row]。而在Java API中,用户需要Dataset<Row>用来表示DataFrame。

在本文档中,我们经常将Scala/Java数据集Row称为DataFrames。

那么DataFrame和spark核心数据结构RDD之间怎么进行转换呢?

代码如下:

# -*- coding: utf-8 -*-
from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.sql import Row

if __name__ == "__main__":
 # 初始化SparkSession
 spark = SparkSession \
 .builder \
 .appName("RDD_and_DataFrame") \
 .config("spark.some.config.option", "some-value") \
 .getOrCreate()

 sc = spark.sparkContext

 lines = sc.textFile("employee.txt")
 parts = lines.map(lambda l: l.split(","))
 employee = parts.map(lambda p: Row(name=p[0], salary=int(p[1])))

 #RDD转换成DataFrame
 employee_temp = spark.createDataFrame(employee)

 #显示DataFrame数据
 employee_temp.show()

 #创建视图
 employee_temp.createOrReplaceTempView("employee")
 #过滤数据
 employee_result = spark.sql("SELECT name,salary FROM employee WHERE salary >= 14000 AND salary <= 20000")

 # DataFrame转换成RDD
 result = employee_result.rdd.map(lambda p: "name: " + p.name + " salary: " + str(p.salary)).collect()

 #打印RDD数据
 for n in result:
 print(n)

以上这篇spark: RDD与DataFrame之间的相互转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python控制台中实现进度条功能

python控制台中实现进度条功能

我们大多数人都希望写一些简单的python脚本的同时都想能够在程序运行的过程中实现进度条的功能以便查看程序运行的速度或者进度。今天就和大家探讨这个问题:如何在python控制台中实现进度...

python如何读取bin文件并下发串口

下面是实现代码 # coding:utf-8 import time, serial from struct import * import binascii file = ope...

PyMongo安装使用笔记

这里是简单的安装和使用记录,首先要有一个可用的mongo环境,win环境或者linux环境都可以。 假定你对mongo有所了解和知道一些命令行操作。 安装和更新 跟大多数py包安装一样,...

对tensorflow中的strides参数使用详解

在二维卷积函数tf.nn.conv2d(),最大池化函数tf.nn.max_pool(),平均池化函数 tf.nn.avg_pool()中,卷积核的移动步长都需要制定一个参数stride...

python dict 相同key 合并value的实例

如下所示: # #### dict中将key相同的字典合并在一个对象里 """ a = {"a": 1, "b": 2, "c": 1} for k, v in a.iteritem...