python pandas 对series和dataframe的重置索引reindex方法

yipeiwu_com5年前Python基础

reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行。且不会修改原数组,要修改需要使用赋值语句。

series.reindex()

import pandas as pd
import numpy as np
obj = pd.Series(range(4), index=['d', 'b', 'a', 'c'])
print obj
d 0
b 1
a 2
c 3
dtype: int64 
print obj.reindex(['a', 'b', 'c', 'd', 'e'])
1
a 2.0
b 1.0
c 3.0
d 0.0
e NaN
dtype: float64

多出的索引‘e'会被赋值NaN

内插或填充method

obj1=pd.Series(range(3), index=['a', 'c', 'e'])
print obj1.reindex(['a', 'b', 'c', 'd', 'e'],method='pad')
a 0
b 0
c 1
d 1
e 2
dtype: int64

ffill或pad: 前向(或进位)填充

bfill或backfill: 后向(或进位)填充

dataframe.reindex()

dataframe.reindex()可以改变(行)索引,列或两者。当只传入一个序列时,行被重新索引,一次可以对两个重新索引,可是插值只在行侧(0坐标轴)进行

frame = pd.DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'], columns=['c1', 'c2', 'c3'])
print frame
 c1 c2 c3
a 0 1 2
c 3 4 5
d 6 7 8
states = ['c1', 'b2', 'c3']
frame.reindex(columns=states)

c1 b2 c3
a 0 NaN 2
c 3 NaN 5
d 6 NaN 8

列名不一样的会被赋值nan

frame_na=frame.reindex(index=['a', 'b', 'c', 'd'], method='ffill', columns=states)
print frame_na
 c1 b2 c3
a 0 NaN 2
b 0 NaN 2
c 3 NaN 5
d 6 NaN 8

插值只在行侧(0坐标轴)进行,但是我们可以在其之后,对nan值进行填充

frame_na.fillna(method='ffill',axis=1)

c1 b2 c3
a 0.0 0.0 2.0
b 0.0 0.0 2.0
c 3.0 3.0 5.0
d 6.0 6.0 8.0

以上这篇python pandas 对series和dataframe的重置索引reindex方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中实现的RC4算法

闲暇之时,用Python实现了一下RC4算法 编码 UTF-8 class 方式 #/usr/bin/python #coding=utf-8 import sys,os,hash...

pytorch获取模型某一层参数名及参数值方式

1、Motivation: I wanna modify the value of some param; I wanna check the value of some param....

Python入门篇之字典

字典由多个键及与其对应的值构成的对组成(把键值对成为项),每个键和它的值之间用冒号(:)隔开,项之间用逗号(,)隔开,而整个字典由一对大括号括起来。空字典由两个大括号组成:{} dict...

Python寻找路径和查找文件路径的示例

Sys.path 指定用于模块搜索路径的字符串列表 也可以通过sys模块的append方法在Python环境中增加搜索路径。 Sys.path.append(‘/usr/bin/') /...

python中时间转换datetime和pd.to_datetime详析

python中时间转换datetime和pd.to_datetime详析

前言 我们在python对数据进行操作时,经常会选取某一时间段的数据进行分析。这里为大家介绍两个我经常用到的用来选取某一时间段数据的函数:datetime( )和pd.to_dateti...