Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

列举Python中吸引人的一些特性

这里我不讨论 python 的一些有用的库或者框架,只从语言本身,最小支持的情况下谈论这门语言本身。语言的发展都是越来越接近Lisp,这也是Lisp这门语言伟大的原因。 下面我罗列一下我...

python查找重复图片并删除(图片去重)

本文实例为大家分享了python查找重复图片并删除的具体代码,供大家参考,具体内容如下 和网络爬虫配套的,也可单独使用,从网上爬下来的图片重复太多,代码支持识别不同尺寸大小一致的图片,并...

Python 中字符串拼接的多种方法

python拼接字符串一般有以下几种方法: ①直接通过(+)操作符拼接 s = 'Hello'+' '+'World'+'!' print(s) 输出结果: Hello Worl...

python实现分页效果

python实现分页效果

本文实例为大家分享了python实现分页效果展示的具体代码,供大家参考,具体内容如下 难点:清空Layout #!/usr/bin/python #-*-coding:utf-...

对python读写文件去重、RE、set的使用详解

如下所示: # -*- coding:utf-8 -*- from datetime import datetime import re def Main(): sou...