Numpy数据类型转换astype,dtype的方法

yipeiwu_com5年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用pickle模块报错EOFError Ran out of input的解决方法

本文实例讲述了Python使用pickle模块报错EOFError Ran out of input的解决方法。分享给大家供大家参考,具体如下: 遇到了 EOFError:Ran out...

python中open函数的基本用法示例

前言 本文主要介绍的是关于python中open函数用法的相关资料,用法如下: name = open('errname.txt','w')<br>name.readli...

python logging 日志轮转文件不删除问题的解决方法

前言 最近在维护项目的python项目代码,项目使用了 python 的日志模块 logging, 设定了保存的日志数目, 不过没有生效,还要通过contab定时清理数据。 分析 项目使...

在Django中创建第一个静态视图

正如我们的第一个目标,创建一个网页,用来输出这个著名的示例信息: Hello world. 如果你曾经发布过Hello world页面,但是没有使用网页框架,只是简单的在h...

Python利用flask sqlalchemy实现分页效果

Python利用flask sqlalchemy实现分页效果

Flask-sqlalchemy是关于flask一个针对数据库管理的。文中我们采用一个关于员工显示例子。 首先,我们创建SQLALCHEMY对像db。 from flask impo...