Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python参数类型以及常见的坑详解

Python参数类型以及常见的坑详解

导语 由于之前遇到过几次有关于参数类型的坑,以及经常容易把一些参数类型搞混淆,现在做一下有关参数类型的总结记录以及对之前踩坑经历的分析。 参数类型 首先我们列举一下有关于Python...

儿童python练习实例

实例一: 题目:有四个数字:1、2、3、4,能组成多少个互不相同且无重复数字的三位数?各是多少? 程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满...

PyCharm专业最新版2019.1安装步骤(含激活码)

PyCharm专业最新版2019.1安装步骤(含激活码)

Pycharm是一款很好用的python开发工具,开发Python爬虫和Python web方面都很不错 这里我为大家提供了两种pycharm激活方式 分别为:2020年、2089年、...

对python中assert、isinstance的用法详解

1. assert 函数说明: Assert statements are a convenient way to insert debugging assertions into a...

python+influxdb+shell编写区域网络状况表

python+influxdb+shell编写区域网络状况表

本文为大家分享了python+influxdb+shell写一个区域网络状况表,供大家参考,具体内容如下 shell脚本部分: ex:就是ping 各个目的ip10个包,然后获取丢包率...