Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python urls.py的三种配置写法实例详解

urls.py的配置写法一般有三种方式。 1. 第一种是导入视图的方式,就是 The Django Book 里面样例的写法: from blog.views import inde...

Python使用requests提交HTTP表单的方法

Python的requests库, 其口号是HTTP for humans,堪称最好用的HTTP库。 使用requests库,可以使用数行代码实现自动化的http操作。以http pos...

Python列表生成式与生成器操作示例

本文实例讲述了Python列表生成式与生成器操作。分享给大家供大家参考,具体如下: 列表生成式:能够用来创建list的生成式 比如想要生成类似[1*1,2*2,3*3,…..100*10...

Python3实现发送邮件和发送短信验证码功能

Python3实现发送邮件和发送短信验证码功能

 Python3实现发送邮件: import smtplib from email.mime.text import MIMEText from email.utils i...

python pygame实现2048游戏

python pygame实现2048游戏

实现2048相对来说比较简单,用4*4的二维数组保存地图,pygame.key.get_pressed()获取键盘操作,详见代码。 效果图 代码 # -*- coding: ut...