Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何使用Flask-Migrate拓展数据库表结构

前言 在我们用 sqlchemy 模块创建完几个表时,如果在实际生产环境中,需要对表结构进行更改,应该怎么办呢?总不能把表删除了吧,这样数据就会丢失了。 更好的解决办法是使用数据库迁移框...

Python中文件遍历的两种方法

关于Python的文件遍历,大概有两种方法,一种是较为便利的os.walk(),还有一种是利用os.listdir()递归遍历。 方法一:利用os.walk os.walk可以自顶向下或...

利用python求相邻数的方法示例

前言 本文主要给大家介绍了关于利用python求相邻数的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 什么是相邻数? 比如5,相邻数为4和6,和5相差1的数,...

Django组件content-type使用方法详解

Django组件content-type使用方法详解

前言 一个表和多个表进行关联,但具体随着业务的加深,表不断的增加,关联的数量不断的增加,怎么通过一开始通过表的设计后,不在后期在修改表,彻底的解决这个问题呢呢 django中的一个组件c...

OpenCV-Python 摄像头实时检测人脸代码实例

OpenCV-Python 摄像头实时检测人脸代码实例

参考 OpenCV摄像头使用 代码 import cv2 cap = cv2.VideoCapture(4) # 使用第5个摄像头(我的电脑插了5个摄像头) face_cascad...