Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈python对象数据的读写权限

面向对象的编程语言在写大型程序的的时候,往往比面向过程的语言用起来更方便,安全。其中原因之一在于:类机制。 类,对众多的数据进行分类,封装,让一个数据对象成为一个完整的个体,贴近现实生活...

Python中使用pypdf2合并、分割、加密pdf文件的代码详解

朋友需要对一个pdf文件进行分割,在网上查了查发现这个pypdf2可以完成这些操作,所以就研究了下这个库,并做一些记录。首先pypdf2是python3版本的,在之前的2版本有一个对应p...

python中文编码与json中文输出问题详解

python中文编码与json中文输出问题详解

前言 python2.x版本的字符编码有时让人很头疼,遇到问题,网上方法可以解决错误,但对原理还是一知半解,本文主要介绍 python 中字符串处理的原理,附带解决 json 文件输出时...

Django后端发送小程序微信模板消息示例(服务通知)

Django后端发送小程序微信模板消息示例(服务通知)

模板消息 官方文档:https://developers.weixin.qq.com/miniprogram/dev/api-backend/open-api/template-mess...

python解析发往本机的数据包示例 (解析数据包)

tcp.py 复制代码 代码如下:# -*- coding: cp936 -*-import socketfrom struct import *from time import cti...