Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pandas读写CSV文件的方法示例

Pandas读写CSV文件的方法示例

读csv 使用pandas读取 import pandas as pd import csv if name == '__main__': # header=0——表示csv文件的...

Python中的变量和作用域详解

作用域介绍 python中的作用域分4种情况: L:local,局部作用域,即函数中定义的变量; E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域...

Python格式化压缩后的JS文件的方法

本文实例讲述了Python格式化压缩后的JS文件的方法。分享给大家供大家参考。具体分析如下: 该脚本可以把压缩后的js文件格式上进行些还原,当然不会百分百完美,暂不处理语法问题,只是为了...

解决Python2.7中IDLE启动没有反应的问题

解决Python2.7中IDLE启动没有反应的问题

安装Python2.7后,它自带一个编辑器IDLE,但是使用几次之后出现启动不了的情况,可做如下操作。 Windows操作系统下,使用快捷键 win+R 启动“运行”对话框,输入下面的路...

Python排序搜索基本算法之插入排序实例分析

Python排序搜索基本算法之插入排序实例分析

本文实例讲述了Python排序搜索基本算法之插入排序。分享给大家供大家参考,具体如下: 插入排序生活中非常常见,打扑克的时候人的本能就在用插入排序:把抽到的一张插入到手上牌的正确位置上。...