Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python模块restful使用方法实例

python模块restful使用方法实例

RESTful架构,目前是比较流行的一种互联网软件架构。REST,即Representational State Transfer的缩写。 说白点就是网站即软件,再白点就是一个服务软件支...

Python中的一些陷阱与技巧小结

Python是一种被广泛使用的强大语言,让我们深入这种语言,并且学习一些控制语句的技巧,标准库的窍门和一些常见的陷阱。 Python(和它的各种库)非常庞大。它被用于系统自动化、web...

Python3enumrate和range对比及示例详解

前言 在Python中,enumrate和range都常用于for循环中,enumrate函数用于同时循环列表和元素,而range()函数可以生成数值范围变化的列表,而能够用于for循环...

Python 字符串操作方法大全

1、去空格及特殊符号复制代码 代码如下:s.strip().lstrip().rstrip(',')2、复制字符串复制代码 代码如下:#strcpy(sStr1,sStr2)sStr1...

Python基于回溯法子集树模板解决最佳作业调度问题示例

Python基于回溯法子集树模板解决最佳作业调度问题示例

本文实例讲述了Python基于回溯法子集树模板解决最佳作业调度问题。分享给大家供大家参考,具体如下: 问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成。每一个作业...