Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas带有重复索引操作方法

有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题。 一、判断索引是否重复 a、Series索引重复判断 s = Series([1,2,3,4,5],...

Django中自定义查询对象的具体使用

自定义查询对象 - objects ①声明一个类EntryManager,继承自models.Manager,并添加自定义函数 ②使用创建的自定义类EntryManager 覆盖Mo...

在Python中调用Ping命令,批量IP的方法

如下所示: #!/usr/bin/env python #coding:UTF-8 ''''''' Author: jefferchen@163.com 可在命令行直接带目的IP...

Python操作MySQL数据库的两种方式实例分析【pymysql和pandas】

Python操作MySQL数据库的两种方式实例分析【pymysql和pandas】

本文实例讲述了Python操作MySQL数据库的两种方式。分享给大家供大家参考,具体如下: 第一种 使用pymysql 代码如下: import pymysql #打开数据库连接 d...

pygame学习笔记(5):游戏精灵

pygame学习笔记(5):游戏精灵

据说在任天堂FC时代,精灵的作用相当巨大,可是那时候只知道怎么玩超级玛丽、魂斗罗,却对精灵一点也不知。pygame.sprite.Sprite就是Pygame里面用来实现精灵的一个类,使...