Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现简单的多任务mysql转xml的方法

本文实例讲述了Python实现简单的多任务mysql转xml的方法。分享给大家供大家参考,具体如下: 为了需求导出的格式尽量和navicat导出的xml一致。 用的gevent,文件i/...

python实现单链表的方法示例

python实现单链表的方法示例

前言 首先说下线性表,线性表是一种最基本,最简单的数据结构,通俗点讲就是一维的存储数据的结构。 线性表分为顺序表和链接表: 顺序表示指的是用一组地址连续的存储单元依次存储线性表的数...

Python中捕捉详细异常信息的代码示例

大家在开发的过程中可能时常碰到一个需求,需要把Python的异常信息输出到日志文件中。 网上的办法都不太实用,下面介绍一种实用的,从Python 2.7源码中扣出来的。 废话不说 直接上...

python基于http下载视频或音频

一、简介 这里介绍使用python基于http下载视频或音频。 二、关键点 1、断点续传 视频或音频文件一般比较大,所以通过需要断点续传。方式通过在http的header里添加Range...

libreoffice python 操作word及excel文档的方法

1、开始、关闭libreoffice服务; 开始之前同步字体文件时间,是因为创建soffice服务时,服务会检查所需加载的文件的时间,如果其认为时间不符,则其可能会重新加载,耗时较长,因...