Numpy数据类型转换astype,dtype的方法

yipeiwu_com5年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python async with和async for的使用

网上async with和async for的中文资料比较少,我把PEP 492中的官方陈述翻译一下。 异步上下文管理器”async with” 异步上下文管理器指的是在enter和e...

Python-基础-入门 简介

Python简介及入门 python为什么是python 选择自己喜欢的语言,这往往不容易,更多的是根据需求 话说,之前是java,大学用了三年+实习半年,后来入职做测试开发后,碰到了p...

Python获取统计自己的qq群成员信息的方法

Python获取统计自己的qq群成员信息的方法

首先说明一下需要使用的工具以及技术:python3 + selenium selenium安装方法:pip install selenium 前提:获取自己的qq群成员信息,自己必须是群...

python 环境变量和import模块导入方法(详解)

1、定义 模块:本质就是.py结尾的文件(逻辑上组织python代码)模块的本质就是实现一个功能 文件名就是模块名称 包: 一个有__init__.py的文件夹;用来存放模块文件 2、导...

Python排序算法之选择排序定义与用法示例

Python排序算法之选择排序定义与用法示例

本文实例讲述了Python排序算法之选择排序定义与用法。分享给大家供大家参考,具体如下: 选择排序 选择排序比较好理解,好像是在一堆大小不一的球中进行选择(以从小到大,先选最小球为例):...