Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python numpy 一维数组转变为多维数组的实例

python numpy 一维数组转变为多维数组的实例

如下所示: import numpy new_list = [i for i in range(9)] numpy.array(new_list).reshape(3,3) 借助n...

Python的Bottle框架的一些使用技巧介绍

之前对bottle做过不少的介绍,也写过一些文章来说明bottle的缺点,最近发现其实之前有些地方说的不太公平,所以趁此机会也来更正一下。     bott...

Python实现决策树C4.5算法的示例

Python实现决策树C4.5算法的示例

为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。 之所以这样做是因为...

pip install python 快速安装模块的教程图解

pip install python 快速安装模块的教程图解

之前python安装模块要在网络上下载,从python2.7.9之后,以及python3,python就自带pip 这个命令,能够快速的安装模块 1, 首先打开python的主文件夹...

Python 70行代码实现简单算式计算器解析

描述:用户输入一系列算式字符串,程序返回计算结果。 要求:不使用eval、exec函数。 实现思路:找到当前字符串优先级最高的表达式,在算术运算中,()优先级最高,则取出算式最底层的()...