Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python在groupby分组后提取指定位置记录方法

Python在groupby分组后提取指定位置记录方法

在进行数据分析、数据建模时,我们首先要做的就是对数据进行处理,提取我们需要的信息。下面为大家介绍一些groupby的用法,以便能够更加方便地进行数据处理。 我们往往在使用groupby进...

python实现XML解析的方法解析

这篇文章主要介绍了python实现XML解析的方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 三种方法:一是xml.dom.*...

Python安装lz4-0.10.1遇到的坑

因为项目的需求,要 lz4.0.10.1 的,因为本机已经有一个 1.1.0 版本的,所以必须先卸掉,然后我差点没疯了(手动微笑) sudo pip uninstall lz4 Un...

python中使用pyhook实现键盘监控的例子

pyhook下载:http://sourceforge.net/projects/pyhook/files/pyhook/1.5.1/ pyhookAPI手册:http://pyhook...

Python远程桌面协议RDPY安装使用介绍

RDPY 是基于 Twisted Python 实现的微软 RDP 远程桌面协议。 RDPY 提供了如下 RDP 和 VNC 支持: ●RDP Man In The Middle pro...