Numpy数据类型转换astype,dtype的方法

yipeiwu_com6年前Python基础

1、查看数据类型

In [11]: arr = np.array([1,2,3,4,5])
In [12]: arr
Out[12]: array([1, 2, 3, 4, 5])
// 该命令查看数据类型
In [13]: arr.dtype
Out[13]: dtype('int64')
In [14]: float_arr = arr.astype(np.float64)
// 该命令查看数据类型
In [15]: float_arr.dtype
Out[15]: dtype('float64')

2、转换数据类型

// 如果将浮点数转换为整数,则小数部分会被截断
In [7]: arr2 = np.array([1.1, 2.2, 3.3, 4.4, 5.3221])
In [8]: arr2
Out[8]: array([ 1.1 , 2.2 , 3.3 , 4.4 , 5.3221])
// 查看当前数据类型
In [9]: arr2.dtype
Out[9]: dtype('float64')
// 转换数据类型 float -> int
In [10]: arr2.astype(np.int32)
Out[10]: array([1, 2, 3, 4, 5], dtype=int32)

3、字符串数组转换为数值型

In [4]: numeric_strings = np.array(['1.2','2.3','3.2141'], dtype=np.string_)
In [5]: numeric_strings
Out[5]: array(['1.2', '2.3', '3.2141'], dtype='|S6')
// 此处写的是float 而不是np.float64, Numpy很聪明,会将python类型映射到等价的dtype上
In [6]: numeric_strings.astype(float)
Out[6]: array([ 1.2, 2.3, 3.2141])

以上这篇Numpy数据类型转换astype,dtype的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

TensorFlow实现非线性支持向量机的实现方法

TensorFlow实现非线性支持向量机的实现方法

这里将加载iris数据集,创建一个山鸢尾花(I.setosa)的分类器。 # Nonlinear SVM Example #-----------------------------...

Python素数检测实例分析

本文实例讲述了Python素数检测的方法。分享给大家供大家参考。具体如下: 该程序实现了素数检测器功能,如果结果是true,则是素数,如果结果是false,则不是素数。 def fn...

python3 webp转gif格式的实现示例

使用PIL库,python3安装需要使用 pip install pillow from PIL import Image import os import re imgP...

Python中logging.NullHandler 的使用教程

在使用 peewee 框架时,默认是不会出现日志消息的。 from peewee import Model, CharField, DateTimeField, IntegerFie...

Django命名URL和反向解析URL实现解析

Django命名URL和反向解析URL实现解析

命名 URL: test.html: <!DOCTYPE html> <html lang="en"> <head> <meta cha...