numpy判断数值类型、过滤出数值型数据的方法

yipeiwu_com6年前Python基础

numpy是无法直接判断出由数值与字符混合组成的数组中的数值型数据的,因为由数值类型和字符类型组成的numpy数组已经不是数值类型的数组了,而是dtype='<U11'。

1、math.isnan也不行,它只能判断float("nan"):

>>> import math 
>>> math.isnan(1) 
False 
>>> math.isnan('a') 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
TypeError: a float is required 
>>> math.isnan(float("nan")) 
True 
>>> 

2、np.isnan不可用,因为np.isnan只能用于数值型与np.nan组成的numpy数组:

>>> import numpy as np 
>>> test1=np.array([1,2,'aa',3]) 
>>> np.isnan(test1) 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could 
 not be safely coerced to any supported types according to the casting rule ''sa 
fe'' 
>>> test2=np.array([1,2,np.nan,3]) 
>>> np.isnan(test2) 
array([False, False, True, False], dtype=bool) 
>>> 

解决办法:

方法1:将numpy数组转换为python的list,然后通过filter过滤出数值型的值,再转为numpy, 但是,有一个严重的问题,无法保证原来的索引

>>> import numpy as np 
>>> test1=np.array([1,2,'aa',3]) 
>>> list1=list(test1) 
>>> def filter_fun(x): 
... try: 
...  return isinstance(float(x),(float)) 
... except: 
...  return False 
... 
>>> list(filter(filter_fun,list1)) 
['1', '2', '3'] 
>>> np.array(filter(filter_fun,list1)) 
array(<filter object at 0x0339CA30>, dtype=object) 
>>> np.array(list(filter(filter_fun,list1))) 
array(['1', '2', '3'], 
 dtype='<U1') 
>>> np.array([float(x) for x in filter(filter_fun,list1)]) 
array([ 1., 2., 3.]) 
>>> 

方法2:利用map制作bool数组,然后再过滤数据和索引:

>>> import numpy as np
>>> test1=np.array([1,2,'aa',3])
>>> list1=list(test1)
>>> def filter_fun(x):
... try:
...  return isinstance(float(x),(float))
... except:
...  return False
...
>>> import pandas as pd
>>> test=pd.DataFrame(test1,index=[1,2,3,4])
>>> test
 0
1 1
2 2
3 aa
4 3
>>> index=test.index
>>> index
Int64Index([1, 2, 3, 4], dtype='int64')
>>> bool_index=map(filter_fun,list1)
>>> bool_index=list(bool_index) #bool_index这样的迭代结果只能list一次,一次再list时会是空,所以保存一下list的结果
>>> bool_index
[True, True, False, True]
>>> new_data=test1[np.array(bool_index)]
>>> new_data
array(['1', '2', '3'],
 dtype='<U11')
>>> new_index=index[np.array(bool_index)]
>>> new_index
Int64Index([1, 2, 4], dtype='int64')
>>> test2=pd.DataFrame(new_data,index=new_index)
>>> test2
 0
1 1
2 2
4 3
>>>

以上这篇numpy判断数值类型、过滤出数值型数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python脚本生成随机IP的简单方法

需求 在某应用中,需要根据一定的规则生成随机的IP地址,规则类似于192.168.11.0/24这样的CIDR形式给出。 实现 经过艰苦卓绝的调试,下面的代码是可以用的: RAND...

在pycharm中使用git版本管理以及同步github的方法

在pycharm中使用git版本管理以及同步github的方法

注意:首先你电脑必须安装git版本控制器(软件),在官网下载即可。 pycharm中使用git以及github很简单,首先在设置中搜索github: 点击右边的Create API T...

python3 面向对象__类的内置属性与方法的实例代码

0.object类源码 class object: """ The most base type """ def __delattr__(self, *args, **kwa...

python 发送json数据操作实例分析

python 发送json数据操作实例分析

本文实例讲述了python 发送json数据操作。分享给大家供大家参考,具体如下: # !/usr/bin/env python # -*- coding: utf-8 -*-...

django 自定义filter 判断if var in list的例子

1. 需求: 用户答题练习,当用户获取所有题目的同时,需要判断用户是否已经做过该题目,如果做过,需要render的时候添加一个“回顾”按钮。 2. 实现 a. 查询用户做过题目的id...