Python基于最小二乘法实现曲线拟合示例

yipeiwu_com6年前Python基础

本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:

这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。

考虑如下的含有4个参数的函数式:

构造数据

import numpy as np
from scipy import optimize
import matplotlib.pyplot as plt
def logistic4(x, A, B, C, D):
  return (A-D)/(1+(x/C)**B)+D
def residuals(p, y, x):
  A, B, C, D = p
  return y - logisctic4(x, A, B, C, D)
def peval(x, p):
  A, B, C, D = p
  return logistic4(x, A, B, C, D)
A, B, C, D = .5, 2.5, 8, 7.3
x = np.linspace(0, 20, 20)
y_true = logistic4(x, A, B, C, D)
y_meas = y_true + 0.2 * np.random.randn(len(y_true))

调用工具箱函数,进行优化

p0 = [1/2]*4
plesq = optimize.leastsq(residuals, p0, args=(y_meas, x))
            # leastsq函数的功能其实是根据误差(y_meas-y_true)
            # 估计模型(也即函数)的参数

绘图

plt.figure(figsize=(6, 4.5))
plt.plot(x, peval(x, plesq[0]), x, y_meas, 'o', x, y_true)
plt.legend(['Fit', 'Noisy', 'True'], loc='upper left')
plt.title('least square for the noisy data (measurements)')
for i, (param, true, est) in enumerate(zip('ABCD', [A, B, C, D], plesq[0])):
  plt.text(11, 2-i*.5, '{} = {:.2f}, est({:.2f}) = {:.2f}'.format(param, true, param, est))
plt.savefig('./logisitic.png')
plt.show()

PS:这里再为大家推荐两款相似的在线工具供大家参考:

在线多项式曲线及曲线函数拟合工具:
http://tools.jb51.net/jisuanqi/create_fun

在线绘制多项式/函数曲线图形工具:
http://tools.jb51.net/jisuanqi/fun_draw

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

详解如何用OpenCV + Python 实现人脸识别

详解如何用OpenCV + Python 实现人脸识别

下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。 必备知识 Haar-like 通俗的来讲,...

Python requests库用法实例详解

本文实例讲述了Python requests库用法。分享给大家供大家参考,具体如下: requests是Python中一个第三方库,基于 urllib,采用 Apache2 Licens...

python识别文字(基于tesseract)代码实例

python识别文字(基于tesseract)代码实例

这篇文章主要介绍了python识别文字(基于tesseract)代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Ubuntu版...

简单介绍Python中的readline()方法的使用

 readline()方法从文件中读取一整行。尾部的换行符保持在字符串中。如果大小参数且非负,那么一个最大字节数,包括结尾的换行和不完整的行可能会返回。 遇到EOF时立即返回一...

rabbitmq(中间消息代理)在python中的使用详解

rabbitmq(中间消息代理)在python中的使用详解

在之前的有关线程,进程的博客中,我们介绍了它们各自在同一个程序中的通信方法。但是不同程序,甚至不同编程语言所写的应用软件之间的通信,以前所介绍的线程、进程队列便不再适用了;此种情况便只能...