Python基于pyCUDA实现GPU加速并行计算功能入门教程

yipeiwu_com6年前Python基础

本文实例讲述了Python基于pyCUDA实现GPU加速并行计算功能。分享给大家供大家参考,具体如下:

Nvidia的CUDA 架构为我们提供了一种便捷的方式来直接操纵GPU 并进行编程,但是基于 C语言的CUDA实现较为复杂,开发周期较长。而python 作为一门广泛使用的语言,具有 简单易学、语法简单、开发迅速等优点。作为第四种CUDA支持语言,相信python一定会 在高性能计算上有杰出的贡献–pyCUDA。

pyCUDA特点

  • CUDA完全的python实现
  • 编码更为灵活、迅速、自适应调节代码
  • 更好的鲁棒性,自动管理目标生命周期和错误检测
  • 包含易用的工具包,包括基于GPU的线性代数库、reduction和scan,添加了快速傅里叶变换包和线性代数包LAPACK
  • 完整的帮助文档Wiki

pyCUDA的工作流程

具体的调用流程如下:

调用基本例子

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
""")
multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(
  drv.Out(dest), drv.In(a), drv.In(b),
  block=(400,1,1), grid=(1,1))
print dest-a*b
#tips: copy from hello_gpu.py in the package.

具体内容

  • 设备交互
  • Profiler Control
  • 动态编译
  • OpenGL交互
  • GPU数组
  • 超编程技术

补充内容:

对于GPU 加速python还有功能包,例如处理图像的pythonGPU加速包—— pyGPU
以及专门的GPU 加速python机器学习包—— scikitCUDA
Matlab对应的工具包并行计算工具箱GPU计算技术
以及教程介绍文档

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python之父谈Python的未来形式

6月初,Python之父Guido van Rossum在今天的PyCon US大会上作了名为“Python Language”的演讲。近日,他又接受了IT媒体Infoworld的采访,...

python 获取毫秒数,计算调用时长的方法

如题:在python的函数调用中需要记录时间,下面是记录毫秒时间的方法。 import datetime import time t1 = datetime.datetime.now...

Python3 JSON编码解码方法详解

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,它基于ECMAScript的一个子集。 JSON采用完全独立于语言的文本格式,这些特性使JSO...

浅谈python中的变量默认是什么类型

1、type(变量名),输出的结果就是变量的类型; 例如 >>> type(6) <type 'int'> 2、在Python里面变量在声明时,不需要指定变...

Go/Python/Erlang编程语言对比分析及示例代码

Go/Python/Erlang编程语言对比分析及示例代码

本文主要是介绍Go,从语言对比分析的角度切入。之所以选择与Python、Erlang对比,是因为做为高级语言,它们语言特性上有较大的相似性,不过最主要的原因是这几个我比较熟悉。 Go的很...