Python基于pandas实现json格式转换成dataframe的方法

yipeiwu_com5年前Python基础

本文实例讲述了Python基于pandas实现json格式转换成dataframe的方法。分享给大家供大家参考,具体如下:

# -*- coding:utf-8 -*-
#!python3
import re
import json
from bs4 import BeautifulSoup
import pandas as pd
import requests
import os
from pandas.io.json import json_normalize
class image_structs():
  def __init__(self):
    self.picture_url = {
      "image_id": '',
      "picture_url": ''
    }
class data_structs():
  def __init__(self):
    # columns=['title', 'item_url', 'id','picture_url','std_desc','description','information','fitment'])
    self.info={
      "title":'',
      "item_url":'',
      "id":0,
      "picture_url":[],
      "std_desc":'',
      "description":'',
      "information":'',
      "fitment":''
    }
# "https://waldoch.com/store/catalogsearch/result/index/?cat=0&limit=200&p=1&q=nerf+bar"
# https://waldoch.com/store/new-oem-ford-f-150-f150-5-running-boards-nerf-bar-crew-cab-2015-w-brackets-fl34-16451-ge5fm6.html
def get_item_list(outfile):
  result = []
  for i in range(6):
    print(i)
    i = str(i+1)
    url = "https://waldoch.com/store/catalogsearch/result/index/?cat=0&limit=200&p="+i+"&q=nerf+bar"
    web = requests.get(url)
    soup = BeautifulSoup(web.text,"html.parser")
    alink = soup.find_all("a",class_="product-image")
    for a in alink:
      title = a["title"]
      item_url = a["href"]
      result.append([title,item_url])
  df = pd.DataFrame(result,columns=["title","item_url"])
  df = df.drop_duplicates()
  df["id"] =df.index
  df.to_excel(outfile,index=False)
def get_item_info(file,outfile):
  DEFAULT_FALSE = ""
  df = pd.read_excel(file)
  for i in df.index:
    id = df.loc[i,"id"]
    if os.path.exists(str(int(id))+".xlsx"):
      continue
    item_url = df.loc[i,"item_url"]
    url = item_url
    web = requests.get(url)
    soup = BeautifulSoup(web.text, "html.parser")
    # 图片
    imglink = soup.find_all("img", class_=re.compile("^gallery-image"))
    data = data_structs()
    data.info["title"] = df.loc[i,"title"]
    data.info["id"] = id
    data.info["item_url"] = item_url
    for a in imglink:
      image = image_structs()
      image.picture_url["image_id"] = a["id"]
      image.picture_url["picture_url"]=a["src"]
      print(image.picture_url)
      data.info["picture_url"].append(image.picture_url)
    print(data.info)
    # std_desc
    std_desc = soup.find("div", itemprop="description")
    try:
      strings_desc = []
      for ii in std_desc.stripped_strings:
        strings_desc.append(ii)
      strings_desc = "\n".join(strings_desc)
    except:
      strings_desc=DEFAULT_FALSE
    # description
    try:
      desc = soup.find('h2', text="Description")
      desc = desc.find_next()
    except:
      desc=DEFAULT_FALSE
    description=desc
    # information
    try:
      information = soup.find("h2", text='Information')
      desc = information
      desc = desc.find_next()
    except:
      desc=DEFAULT_FALSE
    information = desc
    # fitment
    try:
      fitment = soup.find('h2', text='Fitment')
      desc = fitment
      desc = desc.find_next()
    except:
      desc=DEFAULT_FALSE
    fitment=desc
    data.info["std_desc"] = strings_desc
    data.info["description"] = str(description)
    data.info["information"] = str(information)
    data.info["fitment"] = str(fitment)
    print(data.info.keys())
    singledf = json_normalize(data.info,"picture_url",['title', 'item_url', 'id', 'std_desc', 'description', 'information', 'fitment'])
    singledf.to_excel("test.xlsx",index=False)
    exit()
    # print(df.ix[i])
  df.to_excel(outfile,index=False)
# get_item_list("item_urls.xlsx")
get_item_info("item_urls.xlsx","item_urls_info.xlsx")

这里涉及到的几个Python模块都可以使用pip install命令进行安装,如:

pip install BeautifulSoup4

pip install xlrd

pip install openpyxl

PS:这里再为大家推荐几款比较实用的json在线工具供大家参考使用:

在线JSON代码检验、检验、美化、格式化工具:
http://tools.jb51.net/code/json

JSON在线格式化工具:
http://tools.jb51.net/code/jsonformat

在线XML/JSON互相转换工具:
http://tools.jb51.net/code/xmljson

json代码在线格式化/美化/压缩/编辑/转换工具:
http://tools.jb51.net/code/jsoncodeformat

在线json压缩/转义工具:
http://tools.jb51.net/code/json_yasuo_trans

更多Python相关内容感兴趣的读者可查看本站专题:《Python操作json技巧总结》、《Python编码操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python pycharm的安装及其使用

python pycharm的安装及其使用

一.安装python 进入python官网,点击依次点击红色选中部分,开始下载。。。 下载完成后,打开安装包,如下有两个选项,一个是立即安装,另一个自定义安装,如果C盘空间足够的话,直...

详解python 利用echarts画地图(热力图)(世界地图,省市地图,区县地图)

详解python 利用echarts画地图(热力图)(世界地图,省市地图,区县地图)

首先安装对应的python模块 $ pip install pyecharts==0.5.10 $ pip install echarts-countries-pypkg $ pip...

django组合搜索实现过程详解(附代码)

django组合搜索实现过程详解(附代码)

一.简介 # 组合搜索 # 技术方向:自动化,测试,运维,前端 # 分类:Python Linux JavaScript OpenStack Node.js GO #...

Python实现获取邮箱内容并解析的方法示例

本文实例讲述了Python实现获取邮箱内容并解析的方法。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- from email.parser impo...

Python实现的自定义多线程多进程类示例

本文实例讲述了Python实现的自定义多线程多进程类。分享给大家供大家参考,具体如下: 最近经常使用到对大量文件进行操作的程序以前每次写的时候都要在函数中再写一个多线程多进程的函数,做了...