Python使用pandas处理CSV文件的实例讲解

yipeiwu_com6年前Python基础

Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大。

CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了。

我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在terminal里的,数据量十分庞大,为了保存获得的数据,在Linux下使用了数据流重定向,把数据全部保存到了文本文件中,形成了一个本地csv文件。

Pandas读取本地CSV文件并设置Dataframe(数据格式)

import pandas as pd
import numpy as np
df=pd.read_csv('filename',header=None,sep=' ') #filename可以直接从盘符开始,标明每一级的文件夹直到csv文件,header=None表示头部为空,sep=' '表示数据间使用空格作为分隔符,如果分隔符是逗号,只需换成 ‘,'即可。
print df.head()
print df.tail()
#作为示例,输出CSV文件的前5行和最后5行,这是pandas默认的输出5行,可以根据需要自己设定输出几行的值

数据读取示例

图片中显示了我本地数据的前5行与最后5行,最前面一列没有标号的是行号,数据一共有13列,标号从0到12,一行显示不完全,在第9列以后换了行,并且用反斜杠“\”标注了出来。

2017年4月28日更新

使用pandas直接读取本地的csv文件后,csv文件的列索引默认为从0开始的数字,重定义列索引的语句如下:

import pandas as pd
import numpy as np
df=pd.read_csv('filename',header=None,sep=' ',names=["week",'month','date','time','year','name1','freq1','name2','freq2','name3','data1','name4','data2'])
print df

此时打印出的文件信息如下,列索引已经被重命名:

以上这篇Python使用pandas处理CSV文件的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用wxpython实现的一个简单图片浏览器实例

上次我爬了n多图片,但是浏览的时候有一个问题。 图片浏览器的浏览一般都是按名称排的,而我对图片的命名是按照数字递增的。比如3总是会排在10后面,也就无法快速地浏览图片了。 所以,出于方便...

python Crypto模块的安装与使用方法

python Crypto模块的安装与使用方法

前言 最开始想尝试在windows下面安装python3.6,虽然python安装成功,但在安装Cryto模块用pip3 install pycrypto老是会报错。老夫搞了半天,最终决...

Anaconda2 5.2.0安装使用图文教程

Anaconda2 5.2.0安装使用图文教程

Anacond的介绍 Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anacon...

对命令行模式与python交互模式介绍

命令行模式与python交互模式 1.在命令行模式下,可以执行 python 进入 Python 交互式环境,也可以执 行 python hello.py 运行一个.py 文件。 2.在...

基于Python批量生成指定尺寸缩略图代码实例

基于Python批量生成指定尺寸缩略图代码实例

这篇文章主要介绍了基于Python批量生成指定尺寸缩略图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最近我们商城上架的应用...