Python使用pandas处理CSV文件的实例讲解

yipeiwu_com6年前Python基础

Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大。

CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了。

我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在terminal里的,数据量十分庞大,为了保存获得的数据,在Linux下使用了数据流重定向,把数据全部保存到了文本文件中,形成了一个本地csv文件。

Pandas读取本地CSV文件并设置Dataframe(数据格式)

import pandas as pd
import numpy as np
df=pd.read_csv('filename',header=None,sep=' ') #filename可以直接从盘符开始,标明每一级的文件夹直到csv文件,header=None表示头部为空,sep=' '表示数据间使用空格作为分隔符,如果分隔符是逗号,只需换成 ‘,'即可。
print df.head()
print df.tail()
#作为示例,输出CSV文件的前5行和最后5行,这是pandas默认的输出5行,可以根据需要自己设定输出几行的值

数据读取示例

图片中显示了我本地数据的前5行与最后5行,最前面一列没有标号的是行号,数据一共有13列,标号从0到12,一行显示不完全,在第9列以后换了行,并且用反斜杠“\”标注了出来。

2017年4月28日更新

使用pandas直接读取本地的csv文件后,csv文件的列索引默认为从0开始的数字,重定义列索引的语句如下:

import pandas as pd
import numpy as np
df=pd.read_csv('filename',header=None,sep=' ',names=["week",'month','date','time','year','name1','freq1','name2','freq2','name3','data1','name4','data2'])
print df

此时打印出的文件信息如下,列索引已经被重命名:

以上这篇Python使用pandas处理CSV文件的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python socket 超时设置 errno 10054

python socket.error: [Errno 10054] 远程主机强迫关闭了一个现有的连接。问题解决方案: 前几天使用python读取网页。因为对一个网站大量的使用urlop...

Python批量生成特定尺寸图片及图画任意文字的实例

Python批量生成特定尺寸图片及图画任意文字的实例

因为工作需要生成各种大小的图片,所以写了个小脚本,顺便支持了下图画文字内容。 具体代码如下: from PIL import Image, ImageDraw, ImageFont...

Python性能优化技巧

Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。 py   1、关键代码可以依赖于扩展包...

Python常用的文件及文件路径、目录操作方法汇总介绍

python的文件和路径操作函数基本上位于os和os.path模块中。 os.listdir(dirname):列出dirname下的目录和文件 os.path.isdir(name):...

Python Pywavelet 小波阈值实例

小波应用比较广泛,近期想使用其去噪。由于网上都是matlib实现,故记下一下Python的使用 Pywavelet  Denoising 小波去噪  # -*-...