解决python读取几千万行的大表内存问题

yipeiwu_com6年前Python基础

Python导数据的时候,需要在一个大表上读取很大的结果集。

如果用传统的方法,Python的内存会爆掉,传统的读取方式默认在内存里缓存下所有行然后再处理,内存容易溢出

解决的方法:

1)使用SSCursor(流式游标),避免客户端占用大量内存。(这个cursor实际上没有缓存下来任何数据,它不会读取所有所有到内存中,它的做法是从储存块中读取记录,并且一条一条返回给你。)

2)使用迭代器而不用fetchall,即省内存又能很快拿到数据。

import MySQLdb.cursors

conn = MySQLdb.connect(host='ip地址', user='用户名', passwd='密码', db='数据库名', port=3306,
   charset='utf8', cursorclass = MySQLdb.cursors.SSCursor)
cur = conn.cursor()
cur.execute("SELECT * FROM bigtable");
row = cur.fetchone()
while row is not None:
 do something
 row = cur.fetchone()

cur.close()
conn.close()

需要注意的是,

1、因为SSCursor是没有缓存的游标,结果集只要没取完,这个conn是不能再处理别的sql,包括另外生成一个cursor也不行的。

如果需要干别的,请另外再生成一个连接对象。

2、 每次读取后处理数据要快,不能超过60s,否则mysql将会断开这次连接,也可以修改 SET NET_WRITE_TIMEOUT = xx 来增加超时间隔。

以上这篇解决python读取几千万行的大表内存问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用Python获取摄像头并实时控制人脸的实现示例

实现流程 从摄像头获取视频流,并转换为一帧一帧的图像,然后将图像信息传递给opencv这个工具库处理,返回灰度图像(就像你使用本地静态图片一样) 程序启动后,根据监听器信息,使用一个w...

JupyterNotebook设置Python环境的方法步骤

JupyterNotebook设置Python环境的方法步骤

使用Python时,常遇到的一个问题就是Python和库的版本不同。Anaconda的env算是解决这个问题的一个好用的方法。但是,在使用Jupyter Notebook的时候,我却发现...

Python Tensor FLow简单使用方法实例详解

Python Tensor FLow简单使用方法实例详解

本文实例讲述了Python Tensor FLow简单使用方法。分享给大家供大家参考,具体如下: 1、基础概念 Tensor表示张量,是一种多维数组的数据结构。Flow代表流,是指张量之...

浅析PHP与Python进行数据交互

最近,决定在一个项目用tp5进行APP接口开发,用Python做数据分析,然后这就面临一个问题:PHP和Python如何进行数据交互? 思路 我解决此问题的方法是利用了PHP的pas...

python接口调用已训练好的caffe模型测试分类方法

python接口调用已训练好的caffe模型测试分类方法

训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出。 本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/...