使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python赋值语句后逗号的作用分析

本文实例讲述了Python赋值语句后逗号的作用。分享给大家供大家参考。具体分析如下: IDLE 2.6.2 >>> a = 1 >>> b =...

Python lxml模块的基本使用方法分析

本文实例讲述了Python lxml模块的基本使用方法。分享给大家供大家参考,具体如下: 1 lxml的安装 安装方式:pip install lxml 2 lxml的使用 2.1 lx...

日常整理python执行系统命令的常见方法(全)

具体内容如下: 1 os.system 例如 ipython中运行如下命令,返回运行状态status os.system('cat /etc/passwdqc.conf') min=di...

django迁移数据库错误问题解决

django.db.migrations.graph.NodeNotFoundError: Migration order.0002_auto_20181209_0031 depen...

使用Python和OpenCV检测图像中的物体并将物体裁剪下来

使用Python和OpenCV检测图像中的物体并将物体裁剪下来

介绍 硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的昆虫图片数据集了,新图片中很多图片很大,但是图片中的昆虫却很小,所以我就想着先处理一下图片,把图片中的昆虫裁剪...