使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python设计tcp数据包协议类的例子

python设计tcp数据包协议类的例子

一. 问题描述 在tcp编程中,最需要解决的就是粘包分包问题。所以,我们需要在每个数据包前面加上数据包的长度用以分割粘连的包。 二. 包结构的设计 包的组成:包长度+数据域 包长度:用4...

python 实现得到当前时间偏移day天后的日期方法

如下所示: import datetime #以当前时间作为起始点,days=-7向前偏移7天,days=7向后偏移7天 time_now = datetime.datetime.n...

Python使用py2neo操作图数据库neo4j的方法详解

Python使用py2neo操作图数据库neo4j的方法详解

本文实例讲述了Python使用py2neo操作图数据库neo4j的方法。分享给大家供大家参考,具体如下: 1、概念 图:数据结构中的图由节点和其之间的边组成。节点表示一个实体,边表示实体...

Python字符串处理的8招秘籍(小结)

Python的字符串处理,在爬虫的数据解析、大数据的文本清洗,以及普通文件处理等方面应用非常广泛,而且Python对字符串的处理内置了很多高效的函数,功能非常强大、使用非常方便。今天我就...

使用批处理脚本自动生成并上传NuGet包(操作方法)

使用批处理脚本自动生成并上传NuGet包(操作方法)

  Hello 大家好,我是TANZAME,我们又见面了。   NuGet是什么这里就不再重复啰嗦,园子里一搜一大把。今天要跟大家分享的是,在日常开发过程中如何统一管理我们的包,如何通过...