使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 实现随机数详解及实例代码

Python 实现随机数详解及实例代码

Python3实现随机数 random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。 random.seed(x)改变随机数生成器的种子seed。 一般不必...

python实现接口并发测试脚本

常用的网站性能测试指标有:并发数、响应时间、吞吐量、性能计数器等。 1、并发数 并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力。 2、响应时间 响应时间是一个系...

Python批量转换文件编码格式

自己写的方法,适用于linux, #!/usr/bin/python #coding=utf-8 import sys import os, os.path import dirca...

python读写csv文件的方法

python读写csv文件的方法

1.爬取豆瓣top250书籍 import requests import json import csv from bs4 import BeautifulSoup books =...

python让列表倒序输出的实例

如下所示: a = [0,1,2,3,4,5,6,7,8,9] b = a[i:j] 表示复制a[i]到a[j-1],以生成新的list对象 b = a[1:3] 那么,b的内容是 [1...