使用numpy和PIL进行简单的图像处理方法

yipeiwu_com5年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 列表删除所有指定元素的方法

如下所示: a = [1,1,1,2,3,45,1,2,1] a.remove(1) result: [1,1,2,3,45,1,2,1] while 1 in a: a.rem...

对python中的乘法dot和对应分量相乘multiply详解

向量点乘 (dot) 和对应分量相乘 (multiply) : >>> a array([1, 2, 3]) >>> b array([ 1.,...

Django框架序列化与反序列化操作详解

本文实例讲述了Django框架序列化与反序列化操作。分享给大家供大家参考,具体如下: Serializer类 1.定义: Django REST framework中的Serialize...

Python Pexpect库的简单使用方法

简介 最近需要远程操作一个服务器并执行该服务器上的一个python脚本,查到可以使用Pexpect这个库。记录一下。 什么是Pexpect?Pexpect能够产生子应用程序,并控制他们...

Python 数据结构之旋转链表

题目描述:给定一个链表,旋转链表,使得每个节点向右移动k个位置,其中k是一个非负数 样例:给出链表1->2->3->4->5->null和k=2;返回4-...