使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

flask使用session保存登录状态及拦截未登录请求代码

本文主要研究的是flask使用session保存登录状态及拦截未登录请求的相关内容,具体介绍如下。 前端请求form: <form action="/user/add" met...

实例Python处理XML文件的方法

需求 有一个表,里面数据量比较大,每天一更新,其字段可以通过xml配置文件进行配置,即,可能每次建表的字段不一样。 上游跑时会根据配置从源文件中提取,到入库这一步需要根据配置进行建表。...

介绍Python中的一些高级编程技巧

 正文: 本文展示一些高级的Python设计结构和它们的使用方法。在日常工作中,你可以根据需要选择合适的数据结构,例如对快速查找性的要求、对数据一致性的要求或是对索引的要求等,...

Python 功能和特点(新手必学)

Python是一门简单而文字简约的语言。阅读好的Python程序感觉就像阅读英语,尽管是非常严格的英语。Python的这种伪代码特性是其最大强项之一,它可让你专注于解决问题的办法而不是语...

Python将图片批量从png格式转换至WebP格式

Python将图片批量从png格式转换至WebP格式

实现效果 将位于/img目录下的1000张.png图片,转换成.webp格式,并存放于img_webp文件夹内。 源图片目录 目标图片目录 关于批量生成1000张图片,可以参考这篇文...