使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python进程通信之匿名管道实例讲解

匿名管道 管道是一个单向通道,有点类似共享内存缓存.管道有两端,包括输入端和输出端.对于一个进程的而言,它只能看到管道一端,即要么是输入端要么是输出端. os.pipe()返回2个文件描...

Python使用itchat模块实现群聊转发,自动回复功能示例

本文实例讲述了Python使用itchat模块实现群聊转发,自动回复功能。分享给大家供大家参考,具体如下: 1.itchat自动把好友发来的消息,回复给他 仅能实现自动回复 原文给 好友...

对pandas的行列名更改与数据选择详解

对pandas的行列名更改与数据选择详解

记录一些pandas选择数据的内容,此前首先说行列名的获取和更改,以方便获取数据。此文作为学习巩固。 这篇博的内容顺序大概就是: 行列名的获取 —> 行列名的更改 —> 数据...

python使用xmlrpc实例讲解

RPC是Remote Procedure Call的缩写,翻译成中文就是远程方法调用,是一种在本地的机器上调用远端机器上的一个过程(方法)的技术,这个过程也被大家称为“分布式计算”,是为...

Python文件路径名的操作方法

1 文件路径名操作   对于文件路径名的操作在编程中是必不可少的,比如说,有时候要列举一个路径下的文件,那么首先就要获取一个路径,再就是路径名的一个拼接问题,通过字符串的拼接就可以得到一...