使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django使用xlwt导出excel文件实例代码

本文研究的主要是记录一下下导出的方法,并没有做什么REST处理和异常处理。 维护统一的style样式,可以使导出的数据更加美观。 def export_excel(request):...

Python守护进程和脚本单例运行详解

Python守护进程和脚本单例运行详解

本篇文章主要介绍了Python守护进程和脚本单例运行,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧 一、简介 守护进程最重要的特性是后台运行;它必须与其...

详解用python计算阶乘的几种方法

第一种:利用functools 工具处理 import functools result = (lambda k: functools.reduce(int.__mul__, ran...

解决pyinstaller打包exe文件出现命令窗口一闪而过的问题

解决pyinstaller打包exe文件出现命令窗口一闪而过的问题

用pyinstaller打包的exe文件打开时,命令窗口一闪而过,并且未出现GUI界面,也看不到错误信息,然后去网上搜相关的信息,最多的两种说法: 1.添加raw_input()或者os...

Python下载懒人图库JavaScript特效

这是一个简单的Python脚本,主要从懒人图库下载JavaScript特效模板,在脚本中使用了gevent这个第三方库,使用的时候需要先安装。 #!/usr/bin/python #...