使用numpy和PIL进行简单的图像处理方法

yipeiwu_com5年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python网络应用开发知识点浅析

发送电子邮件 在即时通信软件如此发达的今天,电子邮件仍然是互联网上使用最为广泛的应用之一,公司向应聘者发出录用通知、网站向用户发送一个激活账号的链接、银行向客户推广它们的理财产品等几乎...

python列表操作之extend和append的区别实例分析

本文实例讲述了python列表操作之extend和append的区别。分享给大家供大家参考。具体如下: li = ['a', 'b', 'c'] li.extend(['d', '...

python for循环输入一个矩阵的实例

代码如下: a=[] for i in range(3): a.append([]) for j in range(3): a[i].append(int(input(...

Python使用xlrd读取Excel格式文件的方法

本文实例讲述了Python使用xlrd读取Excel格式文件的方法。分享给大家供大家参考。具体如下: 使用xlrd能够很方便的读取excel文件内容,而且这是个跨平台的库,能够在wind...

python计算n的阶乘的方法代码

整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,0的阶乘为1。即:n!=1×2×3×...×n。 首先导入math模块,然后调用factorial()函数来计算阶...