使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中如何使用正则表达式的非贪婪模式示例

前言 本文主要给大家介绍了关于python使用正则表达式的非贪婪模式的相关内容,分享出来供大家参考学习,下面话不多说了,来一起详细的介绍吧。 在正则表达式里,什么是正则表达式的贪婪与非贪...

Python学习小技巧之列表项的排序

本文介绍的是关于Python列表项排序的相关内容,分享出来供大家参考学习,下面来看看详细的介绍: 典型代码1: data_list = [6, 9, 1, 3, 0, 10, 100...

解决pycharm下os.system执行命令返回有中文乱码的问题

解决pycharm下os.system执行命令返回有中文乱码的问题

如下所示: source = ['C:\\Users\\admin\\Desktop\\pythonLearning'] target_dir = 'C:\\Users\\admin...

opencv实现简单人脸识别

opencv实现简单人脸识别

对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别 参考了网上许多资料  假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。 项...

Python2.7版os.path.isdir中文路径返回false的解决方法

问题背景: 本来想写一个脚本来处理硬盘里的文件,并进行分类处理,但是发现一个问题,使用python内置os模块里的方法出现一些问题,具体的见示例。 主要使用的方法(python 2.7版...