使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用threading获取线程函数返回值的实现方法

threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。python当前版本的多线程库没有实现优先级、线程组,线程也不能被停止、暂停、恢复、中断。 threading模...

pyqt5实现登录界面的模板

本文实例为大家分享了pyqt5登录界面的实现模板,供大家参考,具体内容如下 说明 本例,展示了通过登录界面打开主界面的实现方式。 其中,登录的账号与密码判断都比较简单,请大家根据自己需...

Python数据分析之获取双色球历史信息的方法示例

本文实例讲述了Python数据分析之获取双色球历史信息的方法。分享给大家供大家参考,具体如下: 每个人都有一颗中双色球大奖的心,对于技术人员来说,通过技术分析,可以增加中奖几率,现使用p...

python进程管理工具supervisor使用实例

python进程管理工具supervisor使用实例

平时我们写个脚本,要放到后台执行去,我们怎么做呢? 复制代码 代码如下: nohup python example.py 2>&1 /dev/null & 用tumx或者scre...

对python多线程中Lock()与RLock()锁详解

资源总是有限的,程序运行如果对同一个对象进行操作,则有可能造成资源的争用,甚至导致死锁 也可能导致读写混乱 锁提供如下方法: 1.Lock.acquire([blocking]) 2.L...