使用numpy和PIL进行简单的图像处理方法

yipeiwu_com5年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask框架踩坑之ajax跨域请求实现

Flask框架踩坑之ajax跨域请求实现

业务场景: 前后端分离需要对接数据接口。 接口测试是在postman做的,今天才开始和前端对接,由于这是我第一次做后端接口开发(第一次嘛,问题比较多)所以在此记录分享我的踩坑之旅,以便能...

使用Python脚本生成随机IP的简单方法

需求 在某应用中,需要根据一定的规则生成随机的IP地址,规则类似于192.168.11.0/24这样的CIDR形式给出。 实现 经过艰苦卓绝的调试,下面的代码是可以用的: RAND...

python for循环remove同一个list过程解析

下午在用python将Linux的conf配置文件转化成字典dict时遇到了一个奇怪的问题,原先conf配置文件中没有注释行(以#开头的行),后来为了避免这种情况,添加了一个对以#开头的...

python中import学习备忘笔记

前言 在python的模块有两种组织方式,一种是单纯的python文件,文件名就是模块名,一种是包,包是一个包含了若干python文件的目录,目录下必须有一个文件__init__.py,...

pandas实现将dataframe满足某一条件的值选出

在读取数据的时候发现,想把数据中第六列含问号的数据挑出来 import pandas as pd data = pd.read_table('breast-cancer-wisc...