使用numpy和PIL进行简单的图像处理方法

yipeiwu_com5年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单谈谈python基本数据类型

int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31~2**31-1,即-2147483648~2147483647 在64位系统上,整数的位数为64位,取值范围为...

Python实现的redis分布式锁功能示例

本文实例讲述了Python实现的redis分布式锁功能。分享给大家供大家参考,具体如下: #!/usr/bin/env python # coding=utf-8 import ti...

解析Python中的生成器及其与迭代器的差异

生成器 生成器是一种迭代器,是一种特殊的函数,使用yield操作将函数构造成迭代器。普通的函数有一个入口,有一个返回值;当函数被调用时,从入口开始执行,结束时返回相应的返回值。生成器定义...

使用Selenium破解新浪微博的四宫格验证码

使用Selenium破解新浪微博的四宫格验证码

在我们爬虫的时候经常会遇到验证码,新浪微博的验证码是四宫格形式。 可以采用模板验证码的破解方式,也就是把所有验证码的情况全部列出来,然后拿验证码的图片和这所有情况中的图片进行对比,然后获...

Python实现二分查找与bisect模块详解

前言 其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用...