使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python教程之全局变量用法

本文实例讲述了Python全局变量用法。分享给大家供大家参考,具体如下: 全局变量不符合参数传递的精神,所以,平时我很少使用,除非定义常量。今天有同事问一个关于全局变量的问题,才发现其中...

python利用smtplib实现QQ邮箱发送邮件

python利用smtplib实现QQ邮箱发送邮件

python的smtplib提供了一种很方便的途径发送电子邮件。它对smtp协议进行了简单的封装。 下面是一个利用smtplib,实现QQ邮箱发送邮件的例子。 首先必须要打开QQ邮箱的s...

便捷提取python导入包的属性方法

很多时候我们都需要了解下python中导入包的属性方法信息,当然dir 是最便捷的了,不过如果想知道特定的,例如以_ 开头的属性,需要写个筛选,以下是实现筛选的两种方式,主要是练习下yi...

浅谈Python脚本开头及导包注释自动添加方法

浅谈Python脚本开头及导包注释自动添加方法

1、开头:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用 – 指定 #!/usr/bin/python 是用来说明脚本语言是python的 是要...

Python函数参数操作详解

本文实例讲述了Python函数参数操作。分享给大家供大家参考,具体如下: 简述 在 Python 中,函数的定义非常简单,满足对应的语法格式要求即可。对于调用者来说,只需关注如何传递正确...