使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python如何将两个txt文件内容合并

python如何将两个txt文件内容合并

本文实例为大家分享了python将两个txt文件内容合并的具体代码,供大家参考,具体内容如下 分析: 先分别将两个文件中的内容读入列表中,再将列表分割 把不同属性的数据放到单独的列表...

python使用装饰器作日志处理的方法

装饰器这东西我看了一会儿才明白,在函数外面套了一层函数,感觉和java里的aop功能很像;写了2个装饰器日志的例子, 第一个是不带参数的装饰器用法示例,功能相当于给函数包了层异常处理,第...

pytorch中tensor张量数据类型的转化方式

1.tensor张量与numpy相互转换 tensor ----->numpy import torch a=torch.ones([2,5]) tensor([[1.,...

linux下python抓屏实现方法

本文实例讲述了linux下python抓屏实现方法。分享给大家供大家参考。具体实现代码如下: #!/usr/bin/python '''by zevolo, 2012.12.20 '...

python实现隐马尔科夫模型HMM

一份完全按照李航<<统计学习方法>>介绍的HMM代码,供大家参考,具体内容如下 #coding=utf8 ''''' Created on 2017-8-...