使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

编写Python的web框架中的Model的教程

有了ORM,我们就可以把Web App需要的3个表用Model表示出来: import time, uuid from transwarp.db import next_id fr...

Python入门及进阶笔记 Python 内置函数小结

内置函数 常用函数 1.数学相关 •abs(x) abs()返回一个数字的绝对值。如果给出复数,返回值就是该复数的模。 复制代码 代码如下: >>>prin...

python基本语法练习实例

1、打印九九乘法表 #只打印结果 for i in range(1,10): for j in range(1,i+1): print(i*j,end=" ") pr...

Python多线程处理实例详解【单进程/多进程】

Python多线程处理实例详解【单进程/多进程】

本文实例讲述了Python多线程处理操作。分享给大家供大家参考,具体如下: python — 多线程处理 1、一个进程执行完后,继续下一个进程 root@72132server:~#...

快速入手Python字符编码

前言 对于很多接触Python的人而言,字符的处理和语言整体的温顺可靠相比显得格外桀骜不驯难以驾驭。 文章针对Python 2.7,主要因为3对的编码已经有了很大的改善并且实际原理一样,...