使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解python校验SQL脚本命名规则

详解python校验SQL脚本命名规则

需求背景 检查脚本文件中SQL语句是否按规范编写,规则如下: 创建表时,表名称需以"t_"开头且均为小写 增加和创建列时,列名称均为小写字母和_组成 创建函数,函数名称需以...

Python 实现使用dict 创建二维数据、DataFrame

Python 实现使用 dict 创建二维数据 dict 的 keys、values 分别作为二维数据的两列 In [16]: d = {1:'aa', 2:'bb', 3:'cc'...

Python基于hashlib模块的文件MD5一致性加密验证示例

本文实例讲述了Python基于hashlib模块的文件MD5一致性加密验证。分享给大家供大家参考,具体如下: 使用hashlib模块,可对文件MD5一致性加密验证: #python...

python如何通过pyqt5实现进度条

python如何通过pyqt5实现进度条

这篇文章主要介绍了python如何通过pyqt5实现进度条,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下   python太博大精深了...

python检测文件夹变化,并拷贝有更新的文件到对应目录的方法

检测文件夹,拷贝有更新的文件到对应目录 2016.5.19 亲测可用,若有借鉴请修改下文件路径; 学习python小一个月后写的这个功能,属于初学,若有大神路过,求代码优化~ newco...