使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于django channel实现websocket的聊天室的方法示例

websocket 网易聊天室? ​ web微信? ​ 直播? 假如你工作以后,你的老板让你来开发一个内部的微信程序,你...

Django框架实现逆向解析url的方法

本文实例讲述了Django框架实现逆向解析url的方法。分享给大家供大家参考,具体如下: Django中提供了一个关于URL的映射的解决方案,你可以做两个方向的使用: ①. 有客户端的浏...

Python面向对象编程基础实例分析

本文实例讲述了Python面向对象编程基础。分享给大家供大家参考,具体如下: 1、类的定义 Python中类的定义与对象的初始化如下,python中所有类的父类是object,需要继承。...

Python利用正则表达式实现计算器算法思路解析

  (1)不使用eval()等系统自带的计算方法   (2)实现四则混合运算、括号优先级解析 思路:   1、字符串预处理,将所有空格去除   2、判断是否存在括号运算,若存在进行第3步...

Python @property使用方法解析

1. 作用 将类方法转换为类属性,可以用 . 直接获取属性值或者对属性进行赋值 2.实现方式 使用property类来实现,也可以使用property装饰器实现,二者本质是一样的。多...