使用numpy和PIL进行简单的图像处理方法

yipeiwu_com6年前Python基础

如下所示:

from PIL import Image
import numpy as np
# 反相
# a = np.array(Image.open("test.jpg"))
# b = [255, 255, 255] - a
# 灰度,反相
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 - a
# 灰度,颜色变谈
# a = np.array(Image.open("test.jpg").convert('L'))
# b = (100/255)*a + 150 # 区间压缩再增加
# 灰度,颜色加重
# a = np.array(Image.open("test.jpg").convert('L'))
# b = 255 * (a/255)**2 # 像素平方
# 转手绘
a = np.array(Image.open('test.jpg').convert('L')).astype('float')
depth = 10.      # (0-100)
grad = np.gradient(a)    #取图像灰度的梯度值
grad_x, grad_y = grad    #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A

vec_el = np.pi/2.2     # 光源的俯视角度,弧度值
vec_az = np.pi/4.     # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el)    #光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z)  #光源归一化
b = b.clip(0,255)
im = Image.fromarray(b.astype("uint8"))
im.save("./result.jpg")

以上这篇使用numpy和PIL进行简单的图像处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Django filter中用contains和icontains的区别(详解)

qs.filter(name__contains="e") qs.filter(name__icontains="e") 对应sql 'contains': 'LIKE BI...

用Python编写一个简单的俄罗斯方块游戏的教程

俄罗斯方块游戏,使用Python实现,总共有350+行代码,实现了俄罗斯方块游戏的基本功能,同时会记录所花费时间,消去的总行数,所得的总分,还包括一个排行榜,可以查看最高记录。 排行榜中...

python3.5 email实现发送邮件功能

本文实例为大家分享了python3.5 email发送邮件的具体代码,供大家参考,具体内容如下 直接套用代码即可 from email.mime.text import MIMETe...

TensorFlow实现AutoEncoder自编码器

TensorFlow实现AutoEncoder自编码器

一、概述 AutoEncoder大致是一个将数据的高维特征进行压缩降维编码,再经过相反的解码过程的一种学习方法。学习过程中通过解码得到的最终结果与原数据进行比较,通过修正权重偏置参数降低...

Python调用ctypes使用C函数printf的方法

在Python程序中导入ctypes模块,载入动态链接库。动态链接库有三种:cdll以及windows下的windll和oledll,cdll载入导出函数使用标准的cdecl调用规范的库...