数据清洗--DataFrame中的空值处理方法

yipeiwu_com5年前Python基础

数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节。

在python中空值被显示为NaN。首先,我们要构造一个包含NaN的DataFrame对象。

>>> import numpy as np
>>> import pandas as pd
>>> from pandas import Series,DataFrame
>>> from numpy import nan as NaN
>>> data = DataFrame([[12,'man','13865626962'],[19,'woman',NaN],[17,NaN,NaN],[NaN,NaN,NaN]],columns=['age','sex','phone'])
>>> data
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   NaN
2 17.0 NaN   NaN
3 NaN NaN   NaN

删除NaN

删除NaN所在的行

删除表中全部为NaN的行

>>> data.dropna(axis=0, how='all')
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   NaN
2 17.0 NaN   NaN

删除表中任何含有NaN的行

>>> data.dropna(axis=0, how='any')
 age sex  phone
0 12.0 man 13865626962

删除NaN所在的列

删除表中全部为NaN的列

>>> data.dropna(axis=1, how='all')
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   NaN
2 17.0 NaN   NaN
3 NaN NaN   NaN

删除表中任何含有NaN的列

>>> data.dropna(axis=1, how='any')
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3]

注意:axis 就是”轴,数轴“的意思,对应多维数组里的”维“。此处作者的例子是二维数组,所以,axis的值对应表示:0轴(行),1轴(列)。

填充NaN

如果不想过滤(去除)数据,我们可以选择使用fillna()方法填充NaN,这里,作者使用数值'0'替代NaN,来填充DataFrame。

>>> data.fillna(0)
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   0
2 17.0  0   0
3 0.0  0   0

我们还可以通过字典来填充,以实现对不同的列填充不同的值。

>>> data.fillna({'sex':233,'phone':666})
 age sex  phone
0 12.0 man 13865626962
1 19.0 woman   666
2 17.0 233   666
3 NaN 233   666

以上这篇数据清洗--DataFrame中的空值处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3.0 字典key排序

IDLE 3.0 >>> dic = {"aa":1,"bb":2,"ab":3} >>> dic {'aa': 1, 'ab': 3, 'bb':...

Python设计模式之备忘录模式原理与用法详解

Python设计模式之备忘录模式原理与用法详解

本文实例讲述了Python设计模式之备忘录模式原理与用法。分享给大家供大家参考,具体如下: 备忘录模式(Memento Pattern):不破坏封装性的前提下捕获一个对象的内部状态,并在...

Python中的日期时间处理详解

Python中的日期时间处理详解

Python中关于时间、日期的处理库有三个:time、datetime和Calendar,其中datetime又有datetime.date、datetime.time、datetime...

Python通过VGG16模型实现图像风格转换操作详解

Python通过VGG16模型实现图像风格转换操作详解

本文实例讲述了Python通过VGG16模型实现图像风格转换操作。分享给大家供大家参考,具体如下: 1、图像的风格转化 卷积网络每一层的激活值可以看作一个分类器,多个分类器组成了图像在这...

Python实现的RSS阅读器实例

本文实例讲述了Python实现的RSS阅读器。分享给大家供大家参考。具体如下: # -*- coding:utf-8 -*- # file: pyRSS.py # import Tk...