Python+pandas计算数据相关系数的实例

yipeiwu_com5年前Python基础

本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数、Kendall Tau相关系数和spearman秩相关)。

>>> import numpy as np
>>> import pandas as pd

>>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10),
   'B':np.random.randint(1, 100, 10),
   'C':np.random.randint(1, 100, 10)})
>>> df
   A  B  C
0  5 91  3
1 90 15 66
2 93 27  3
3 70 44 66
4 27 14 10
5 35 46 20
6 33 14 69
7 12 41 15
8 28 62 47
9 15 92 77
>>> df.corr() # pearson相关系数
     A       B       C
A 1.000000 -0.560009 0.162105
B -0.560009 1.000000 0.014687
C 0.162105 0.014687 1.000000
>>> df.corr('kendall') # Kendall Tau相关系数

     A       B       C
A 1.000000 -0.314627 0.113666
B -0.314627 1.000000 0.045980
C 0.113666 0.045980 1.000000
>>> df.corr('spearman') # spearman秩相关

     A       B       C
A 1.000000 -0.419455 0.128051
B -0.419455 1.000000 0.067279
C 0.128051 0.067279 1.000000

以上这篇Python+pandas计算数据相关系数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python批量将excel内容进行翻译写入功能

由于小编初来乍到,有很多地方不是很到位,还请见谅,但是很实用的哦! 1.首先是需要进行文件的读写操作,需要获取文件路径,方式使用os.listdir(路径)进行批量查找文件。 fil...

python3实现名片管理系统

基于python3基础课程,编写名片管理系统训练,有利于熟悉python基础代码的使用。 cards_main.py #! /usr/bin/python3 import card...

使用Python编写一个最基础的代码解释器的要点解析

使用Python编写一个最基础的代码解释器的要点解析

一直以来都对编译器和解析器有着很大的兴趣,也很清楚一个编译器的概念和整体的框架,但是对于细节部分却不是很了解。我们编写的程序源代码实际上就是一串字符序列,编译器或者解释器可以直接理解并执...

详解Python 协程的详细用法使用和例子

详解Python 协程的详细用法使用和例子

从句法上看,协程与生成器类似,都是定义体中包含 yield 关键字的函数。可是,在协程中, yield 通常出现在表达式的右边(例如, datum = yield),可以产出值,也可以不...

详解Numpy中的广播原则/机制

广播的原则 如果两个数组的后缘维度(从末尾开始算起的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼容的。广播会在缺失维度和(或)轴长度为1的维度上进行。 在上面的对arr每...