Tensorflow中的placeholder和feed_dict的使用

yipeiwu_com6年前Python基础

TensorFlow 支持占位符placeholder。占位符并没有初始值,它只会分配必要的内存。在会话中,占位符可以使用 feed_dict 馈送数据。

feed_dict是一个字典,在字典中需要给出每一个用到的占位符的取值。

在训练神经网络时需要每次提供一个批量的训练样本,如果每次迭代选取的数据要通过常量表示,那么TensorFlow 的计算图会非常大。因为每增加一个常量,TensorFlow 都会在计算图中增加一个结点。所以说拥有几百万次迭代的神经网络会拥有极其庞大的计算图,而占位符却可以解决这一点,它只会拥有占位符这一个结点。

placeholder函数的定义为

tf.placeholder(dtype, shape=None, name=None)

参数:

    dtype:数据类型。常用的是tf.int32,tf.float32,tf.float64,tf.string等数据类型。
    shape:数据形状。默认是None,也就是一维值。
           也可以表示多维,比如要表示2行3列则应设为[2, 3]。
           形如[None, 3]表示列是3,行不定。
    name:名称。

返回:Tensor类型

例1

import tensorflow as tf

x = tf.placeholder(tf.string)

with tf.Session() as sess:
  output = sess.run(x, feed_dict={x: 'Hello World'})
  print(output)

运行结果:Hello World

例2

import tensorflow as tf

x = tf.placeholder(tf.string)
y = tf.placeholder(tf.int32)
z = tf.placeholder(tf.float32)

with tf.Session() as sess:
  output = sess.run(x, feed_dict = {x :'Hello World', y:123, z:45.67})
  print(output)
  output = sess.run(y, feed_dict = {x :'Hello World', y:123, z:45.67})
  print(output)
  output = sess.run(z, feed_dict = {x :'Hello World', y:123, z:45.67})
print(output)

运行结果:

Hello Word
123
45.66999816894531

例3:

import tensorflow as tf
import numpy as np

x = tf.placeholder(tf.float32, shape=(3, 3)) 
y = tf.matmul(x, x) 
 
with tf.Session() as sess:  
  rand_array = np.random.rand(3, 3)
print(sess.run(y, feed_dict = {x: rand_array}))

运行结果:

[[0.62475741  0.40487182  0.5968855 ]
 [0.17491265  0.08546661  0.23616122]
 [0.53931886  0.24997233  0.56168258]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch制作自己的LMDB数据操作示例

本文实例讲述了pytorch制作自己的LMDB数据操作。分享给大家供大家参考,具体如下: 前言 记录下pytorch里如何使用lmdb的code,自用 制作部分的Code code就是A...

python IDLE 背景以及字体大小的修改方法

python IDLE 背景以及字体大小的修改方法

为了保护眼睛,决定把白色背景换掉: 1 首先,在已经下载好的python文件目录下,找到config-highlight.def文件,我的是在H:\python\python3**\...

简单介绍python封装的基本知识

简单介绍python封装的基本知识

python封装简介 1.效果图:   对比一:   对比二: 2.学习来源代码: # 封装是面向对象的三大特性之一 # 封装指的是隐藏对象中一些不希望被外部所访问到的属性或方...

Python中执行存储过程及获取存储过程返回值的方法

本文实例讲述了Python中执行存储过程及获取存储过程返回值的方法。分享给大家供大家参考,具体如下: 在Pathon中如何执行存储过程呢?可以使用如下方法: 存储过程定义基本如下:...

python中PS 图像调整算法原理之亮度调整

亮度调整 非线性亮度调整: 对于R,G,B三个通道,每个通道增加相同的增量。 线性亮度调整: 利用HSL颜色空间,通过只对其L(亮度)部分调整,可达到图像亮度的线性调整。但是,RGB和H...