对numpy数据写入文件的方法讲解

yipeiwu_com5年前Python基础

numpy数据保存到文件

Numpy提供了几种数据保存的方法。

以3*4数组a为例:

1. a.tofile("filename.bin")

这种方法只能保存为二进制文件,且不能保存当前数据的行列信息,文件后缀不一定非要是bin,也可以为txt,但不影响保存格式,都是二进制。

这种保存方法对数据读取有要求,需要手动指定读出来的数据的的dtype,如果指定的格式与保存时的不一致,则读出来的就是错误的数据。

b = numpy.fromfile("filename.bin",dtype = **)

读出来的数据是一维数组,需要利用

b.shape = 3,4重新指定维数。

2.numpy.save("filename.npy",a)

load()和save()用Numpy专用的二进制格式保存数据,它们会自动处理元素类型和形状等信息。savez()提供了将多个数组存储至一个文件的能力,调用load()方法返回的对象,可以使用数组名对各个数组进行读取。默认数组名arr_0,arr_1,arr_2......

利用这种方法,保存文件的后缀名字一定会被置为.npy,这种格式最好只用numpy.load("filename")来读取。

np.save("a.npy", a.reshape(3,4))
c = np.load("a.npy")
c
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

多个数组存储至一个文件:

a = np.array([[1,2,3],[4,5,6]])
b = np.arange(0,1.0,0.1)
c = np.sin(b)
np.savez("result.npz", a, b, sin_arr=c) #使用sin_arr命名数组c
r = np.load("result.npz") #加载一次即可
r["arr_0"]
array([[1, 2, 3],
[4, 5, 6]])
r["arr_1"]
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
r["sin_arr"]
array([ 0.  , 0.09983342, 0.19866933, 0.29552021, 0.38941834,

0.47942554, 0.56464247, 0.64421769, 0.71735609, 0.78332691])

3.numpy.savetxt("filename.txt",a)

b = numpy.loadtxt("filename.txt")

用于处理一维和二维数组

以上这篇对numpy数据写入文件的方法讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 创建新文件时避免覆盖已有的同名文件的解决方法

思路:创建文件时,先检查是否有同名文件(使用os.path.isfile),如果有,则在文件名后加上编号n来创建。 关键点: 1. 使用os.path.isfile判断文件是否存在 2....

python处理document文档保留原样式

document文档格式、线段、图片、页眉页脚等都不变,供大家参考,具体内容如下 # -*- coding: utf-8 -*- # @Time : 2019/5/6 11:46...

对Python subprocess.Popen子进程管道阻塞详解

问题产生描述 使用子进程处理一个大的日志文件,并对文件进行分析查询,需要等待子进程执行的输出结果,进行下一步处理。 出问题的代码 # 启用子进程执行外部shell命令 def __s...

快速了解Python相对导入

1、绝对导入和相对导入 绝对导入:按照sys.path顺序搜索,先主目录(sys.path中第一项''),然后PYTHONPATH环境变量、标准库路径、pth指定路径等。 相对导入:...

基于pandas将类别属性转化为数值属性的方法

基于pandas将类别属性转化为数值属性的方法

离散特征的编码分为两种情况: 1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码 2、离散特征的取值有大小的意义,比如size:[...