Python OpenCV处理图像之图像直方图和反向投影

yipeiwu_com5年前Python基础

本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下

当我们想比较两张图片相似度的时候,可以使用这一节提到的技术

直方图对比

反向投影

关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:

0x01. 绘制直方图

import cv2.cv as cv
 
def drawGraph(ar,im, size): #Draw the histogram on the image
  minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max value
  hpt = 0.9 * histsize
  for i in range(size):
    intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the image
    cv.Line(im, (i,size), (i,int(size-intensity)),cv.Scalar(255,255,255)) #Draw the line
    i += 1
 
#---- Gray image
orig = cv.LoadImage("img/lena.jpg", cv.CV_8U)
 
histsize = 256 #Because we are working on grayscale pictures which values within 0-255
 
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
 
cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picture
 
histImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(hist.bins, histImg, histsize)
 
cv.ShowImage("Original Image", orig)
cv.ShowImage("Original Histogram", histImg)
#---------------------
 
#---- Equalized image
imEq = cv.CloneImage(orig)
cv.EqualizeHist(imEq, imEq) #Equlize the original image
 
histEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture
eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(histEq.bins, eqImg, histsize)
 
cv.ShowImage("Image Equalized", imEq)
cv.ShowImage("Equalized HIstogram", eqImg)
#--------------------------------
 
cv.WaitKey(0)

0x02. 反向投影

import cv2.cv as cv
 
im = cv.LoadImage("img/lena.jpg", cv.CV_8U)
 
cv.SetImageROI(im, (1, 1,30,30))
 
histsize = 256 #Because we are working on grayscale pictures
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([im], hist)
 
 
cv.NormalizeHist(hist,1) # The factor rescale values by multiplying values by the factor
_,max_value,_,_ = cv.GetMinMaxHistValue(hist)
 
if max_value == 0:
  max_value = 1.0
cv.NormalizeHist(hist,256/max_value)
 
cv.ResetImageROI(im)
 
res = cv.CreateMat(im.height, im.width, cv.CV_8U)
cv.CalcBackProject([im], res, hist)
 
cv.Rectangle(im, (1,1), (30,30), (0,0,255), 2, cv.CV_FILLED)
cv.ShowImage("Original Image", im)
cv.ShowImage("BackProjected", res)
cv.WaitKey(0)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中json格式数据的编码与解码方法详解

Python中json格式数据的编码与解码方法详解

本文实例讲述了Python中json格式数据的编码与解码方法。分享给大家供大家参考,具体如下: python从2.6版本开始内置了json数据格式的处理方法。 1、json格式数据编码...

Python中二维列表如何获取子区域元素的组成

Python中二维列表如何获取子区域元素的组成

用过NumPY的应该都知道,在二维数组中可以方便地使用区域切片功能,如下图: 而这个功能在Python标准库的List中是不支持的,在List中只能以一维方式来进行切片操作: 但有时...

python监控文件并且发送告警邮件

python监控文件并且发送告警邮件

本文实例为大家分享了python监控文件并发送邮件的具体代码,供大家参考,具体内容如下 一、配置文件 import time,datetime TODAY = time.ti...

Python3匿名函数lambda介绍与使用示例

概述 匿名函数,顾名思义即没有名称的函数,和def定义的函数的最大区别在于匿名函数创建后返回函数本身(即匿名函数不需要return来返回值),表达式本身结果就是返回值,而def创建后则...

Django自定义模板过滤器和标签的实现方法

Django自定义模板过滤器和标签的实现方法

现在我们已经很熟悉Django的MTV模式了。模板(template)负责如何去展示数据,而视图(view)负责筛选出正确的数据。因此通常来说逻辑都是放到视图中的,但模板也需要一些 和表...