Python OpenCV处理图像之图像直方图和反向投影

yipeiwu_com5年前Python基础

本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下

当我们想比较两张图片相似度的时候,可以使用这一节提到的技术

直方图对比

反向投影

关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:

0x01. 绘制直方图

import cv2.cv as cv
 
def drawGraph(ar,im, size): #Draw the histogram on the image
  minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max value
  hpt = 0.9 * histsize
  for i in range(size):
    intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the image
    cv.Line(im, (i,size), (i,int(size-intensity)),cv.Scalar(255,255,255)) #Draw the line
    i += 1
 
#---- Gray image
orig = cv.LoadImage("img/lena.jpg", cv.CV_8U)
 
histsize = 256 #Because we are working on grayscale pictures which values within 0-255
 
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
 
cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picture
 
histImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(hist.bins, histImg, histsize)
 
cv.ShowImage("Original Image", orig)
cv.ShowImage("Original Histogram", histImg)
#---------------------
 
#---- Equalized image
imEq = cv.CloneImage(orig)
cv.EqualizeHist(imEq, imEq) #Equlize the original image
 
histEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture
eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(histEq.bins, eqImg, histsize)
 
cv.ShowImage("Image Equalized", imEq)
cv.ShowImage("Equalized HIstogram", eqImg)
#--------------------------------
 
cv.WaitKey(0)

0x02. 反向投影

import cv2.cv as cv
 
im = cv.LoadImage("img/lena.jpg", cv.CV_8U)
 
cv.SetImageROI(im, (1, 1,30,30))
 
histsize = 256 #Because we are working on grayscale pictures
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([im], hist)
 
 
cv.NormalizeHist(hist,1) # The factor rescale values by multiplying values by the factor
_,max_value,_,_ = cv.GetMinMaxHistValue(hist)
 
if max_value == 0:
  max_value = 1.0
cv.NormalizeHist(hist,256/max_value)
 
cv.ResetImageROI(im)
 
res = cv.CreateMat(im.height, im.width, cv.CV_8U)
cv.CalcBackProject([im], res, hist)
 
cv.Rectangle(im, (1,1), (30,30), (0,0,255), 2, cv.CV_FILLED)
cv.ShowImage("Original Image", im)
cv.ShowImage("BackProjected", res)
cv.WaitKey(0)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python pandas实现excel转为html格式的方法

如下所示: #!/usr/bin/env Python # coding=utf-8 import pandas as pd import codecs xd = pd.ExcelF...

对python文件读写的缓冲行为详解

文件的io操作的缓冲行为分为 全缓冲:同系统及磁盘块大小有关,n个字节后执行一次写入操作 行缓冲:遇到换行符执行一次写操作 无缓冲:立刻执行写操作 open()函数 help(ope...

python retrying模块的使用方法详解

前言 我们在写爬虫的过程中,经常遇到爬取失败的情况,这个时候我们一般会通过try块去进行重试,但是每次都写那么一堆try块,真的是太麻烦,所以今天就来说一个比较pythonic的模块,r...

python判断自身是否正在运行的方法

如下所示: # coding: utf-8 import os import psutil import time def write_pid(): pid = os.getp...

python并发编程之多进程、多线程、异步和协程详解

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。 一、多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行...