对python3 一组数值的归一化处理方法详解

yipeiwu_com6年前Python基础

1、什么是归一化:

归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法。如:1,2,3.,那归一化后就是:0,0.5,1

2、归一化步骤:

如:2,4,6

(1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值

min = 2; max = 6; r = max - min = 4

(2)数组中每个数都减去最小值

2,4,6 变成 0,2,4

(3)再除去差值r

0,2,4 变成 0,0.5,1

就得出归一化后的数组了

3、用python 把一个矩阵中每列的数字归一化

import numpy as np
 
def autoNorm(data):   #传入一个矩阵
 mins = data.min(0)  #返回data矩阵中每一列中最小的元素,返回一个列表
 maxs = data.max(0)  #返回data矩阵中每一列中最大的元素,返回一个列表
 ranges = maxs - mins #最大值列表 - 最小值列表 = 差值列表
 normData = np.zeros(np.shape(data))  #生成一个与 data矩阵同规格的normData全0矩阵,用于装归一化后的数据
 row = data.shape[0]      #返回 data矩阵的行数
 normData = data - np.tile(mins,(row,1)) #data矩阵每一列数据都减去每一列的最小值
 normData = normData / np.tile(ranges,(row,1)) #data矩阵每一列数据都除去每一列的差值(差值 = 某列的最大值- 某列最小值)
 return normData
 
arr = np.array([[8,7,8],[4,3,1],[6,9,8]])
print(autoNorm(arr))
 
打印结果:
[[ 1.   0.66666667 1.  ]
 [ 0.   0.   0.  ]
 [ 0.5   1.   1.  ]]

以上这篇对python3 一组数值的归一化处理方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 内置函数进制转换的用法(十进制转二进制、八进制、十六进制)

使用Python内置函数:bin()、oct()、int()、hex()可实现进制转换。 先看Python官方文档中对这几个内置函数的描述: bin(x) Convert an inte...

python+selenium 定位到元素,无法点击的解决方法

报错 selenium.common.exceptions.WebDriverException: Message: Element is not clickable at poin...

Python实现动态图解析、合成与倒放

Python实现动态图解析、合成与倒放

动态图现在已经融入了我们的日常网络生活,大大丰富了我们的表达方式和交流趣味性。常常是一言不合就扔动图,我这里就不举例子了,例子太多,平时大家也都接触过。咱们直接开始本文的内容。 用到的...

python数据化运营的重要意义

python数据化运营 数据化运营的核心是运营,所有数据工作都是围绕运营工作链条展开的,逐步强化数据对于运营工作的驱动作用。数据化运营的价值体现在对运营的辅助、提升和优化上,甚至某些运营...

python实现决策树ID3算法的示例代码

在周志华的西瓜书和李航的统计机器学习中对决策树ID3算法都有很详细的解释,如何实现呢?核心点有如下几个步骤 step1:计算香农熵 from math import log impo...