Python迭代器与生成器基本用法分析

yipeiwu_com5年前Python基础

本文实例讲述了Python迭代器与生成器基本用法。分享给大家供大家参考,具体如下:

迭代器

可以进行for循环的数据类型包括以下两种:

1. 集合数据类型比如listtupledictstr

2. 另一种是生成器

而他们都是可迭代对象,称为Iterable

Isinstandce()可以用来判断对象是否为可迭代对象

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

然后,只有生成器可以称为迭代器,因为他们是不断使用next()函数返回值的,属于惰性计算,而对于迭代器也有一个判断函数

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器

生成器:就是未循环完的列表,这是为了节约电脑内存,设立的一种一边循环一边计算的机制。

创建的方法也是很简单,其中一种就是把列表生成式的[]改成()就可以了

而调用的时候也一般不用麻烦的next()的方法,而是用for循环来遍历

比如:

g= (x*x for x in range(10))
for n in g:
 print(n)

这样就能遍历出所有的生成器中的元素

另一种生成器的方法:如果函数中包含有yield关键字,则这是一个生成器

def odd():
  print('step 1')
  yield 1
  print('step 2')
  yield(3)
  print('step 3')
  yield(5)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python异常对代码运行性能的影响实例解析

Python异常对代码运行性能的影响实例解析

前言 Python的异常处理能力非常强大,但是用不好也会带来负面的影响。我平时写程序的过程中也喜欢使用异常,虽然采取防御性的方式编码会更好,但是交给异常处理会起到偷懒作用。偶尔会想想异常...

从训练好的tensorflow模型中打印训练变量实例

从训练好的tensorflow模型中打印训练变量实例

从tensorflow 训练后保存的模型中打印训变量:使用tf.train.NewCheckpointReader() import tensorflow as tf reader...

新手入门Python编程的8个实用建议

新手入门Python编程的8个实用建议

前言 我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑踩过的雷总结出来的,现在在这里分享一下给大家,因为很...

批量将ppt转换为pdf的Python代码 只要27行!

这是一个Python脚本,能够批量地将微软Powerpoint文件(.ppt或者.pptx)转换为pdf格式。 使用说明 1、将这个脚本跟PPT文件放置在同一个文件夹下。 2、运行这个脚...

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

__author__ = 'Administrator' import numpy as np import cv2 mri_img = np.load('mri_img.npy...