对tf.reduce_sum tensorflow维度上的操作详解

yipeiwu_com5年前Python基础

tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明。官方给的api

reduce_sum(
 input_tensor,
 axis=None,
 keep_dims=False,
 name=None,
 reduction_indices=None
)

input_tensor:表示输入

axis:表示在那个维度进行sum操作。

keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度。

reduction_indices:为了跟旧版本的兼容,现在已经不使用了。

官方的例子:

# 'x' is [[1, 1, 1]
#   [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

自己做的例子:

import tensorflow as tf
import numpy as np
x = np.asarray([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
x_p = tf.placeholder(tf.int32,[2,2,3])
y = tf.reduce_sum(x_p,0) #修改这里
with tf.Session() as sess:
 y = sess.run(y,feed_dict={x_p:x})
 print y
axis= 0:[[ 8 10 12] [14 16 18]] 
1+7 2+8 3+7 …….. 
axis=1: [[ 5 7 9] [17 19 21]] 
1+4 2+5 3 +6 …. 
axis=2: [[ 6 15] [24 33]] 
1+2+3 4+5+6…..

以上这篇对tf.reduce_sum tensorflow维度上的操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

让 python 命令行也可以自动补全

许多人都知道 iPython 有很好的自动补全能力,但是就未必知道 python 也同样可以 Tab 键补全, 您可以在启动 python 后,执行下 复制代码 代码如下: import...

Python自动发送邮件的方法实例总结

Python自动发送邮件的方法实例总结

本文实例讲述了Python自动发送邮件的方法。分享给大家供大家参考,具体如下: python发邮件需要掌握两个模块的用法,smtplib和email,这俩模块是python自带的,只需i...

Python中base64与xml取值结合问题

Base64是一种用64个字符来表示任意二进制数据的方法。 用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要...

Python实现快速多线程ping的方法

本文实例讲述了Python实现快速多线程ping的方法。分享给大家供大家参考。具体如下: #!/usr/bin/python #_*_coding:utf-8_*_ # ''' 名称...

python排序方法实例分析

本文实例讲述了python排序方法。分享给大家供大家参考。具体如下: >>> def my_key1(x): ... return x % 10 ... >...