TensorFlow利用saver保存和提取参数的实例

yipeiwu_com5年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python操作excel的方法(xlsxwriter包的使用)

本文介绍python操作excel的方法(xlsxwriter包的使用),具体内容如下 xlsxwriter包的安装 pip install xlsxwriter Workbook...

Python中为feedparser设置超时时间避免堵塞

python有一个用于解析feed的模块:feedparser,feedparser解析各种feed是非常方便的,唯一比较恼火的是遇到一些badurl,经常会导致堵塞,因此需要为feed...

Python实现微信中找回好友、群聊用户撤回的消息功能示例

本文实例讲述了Python实现微信中找回好友、群聊用户撤回的消息功能。分享给大家供大家参考,具体如下: 还在好奇好友撤回了什么消息吗?群里撤回了什么消息?下面的代码实现了:即使群、好友撤...

python分割和拼接字符串

关于string的split 和 join 方法对导入os模块进行os.path.splie()/os.path.join() 貌似是处理机制不一样,但是功能上一样。1.string.s...

如何用Python来理一理红楼梦里的那些关系

如何用Python来理一理红楼梦里的那些关系

前言 今天,一起用 Python 来理一理红楼梦里的那些关系 不要问我为啥是红楼梦,而不是水浒三国或西游,因为我也鉴定的认为,红楼才是无可争议的中国古典小说只巅峰,且不接受反驳!而红楼...