TensorFlow利用saver保存和提取参数的实例

yipeiwu_com6年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的迭代器与生成器高级用法解析

迭代器 迭代器是依附于迭代协议的对象——基本意味它有一个next方法(method),当调用时,返回序列中的下一个项目。当无项目可返回时,引发(raise)StopIteration异常...

python使用Plotly绘图工具绘制水平条形图

python使用Plotly绘图工具绘制水平条形图

本文实例为大家分享了python绘制水平条形图的具体代码,供大家参考,具体内容如下 水平条形图与绘制柱状图类似,大家可以先看看我之前写的博客,如何绘制柱状图 水平条形图需要在Bar函数中...

简单介绍Python的Django框架的dj-scaffold项目

由于Django没有象rails一样指定项目的目录结构规范,很多人都对django项目的目录结构要如何组织而感到困惑。为此我又新创建了一个开源项目dj-scaffold(django的脚...

在Python中使用Neo4j的方法

在Python中使用Neo4j的方法

Neo4j是面向对象基于Java的 ,被设计为一个建立在Java之上、可以直接嵌入应用的数据存储。此后,其他语言和平台的支持被引入,Neo4j社区获得持续增长,获得了越来越多的技术支持者...

Python 正则表达式的高级用法

Python 正则表达式的高级用法

对于Python来说,学习正则就要学习模块re的使用方法。本文将展示一些大家都应该掌握的高级技巧。 编译正则对象 re.compile函数根据一个模式字符串和可选的标志参数生成一个正则表...