TensorFlow利用saver保存和提取参数的实例

yipeiwu_com5年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用beaker让Facebook的Bottle框架支持session功能

bottle是一个小型web框架,很小只有一个文件,但功能确很强大,学起来也简单,简单和小巧的同时也有很多不足,某些功能支持还不是很完善,比如session.但是也有它自身的好处,我们可...

Python读取YAML文件过程详解

这篇文章主要介绍了Python读取YAML文件过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 YAML语法 学习手册 Pyth...

Python代码实现KNN算法

kNN算法是k-近邻算法的简称,主要用来进行分类实践,主要思路如下: 1.存在一个训练数据集,每个数据都有对应的标签,也就是说,我们知道样本集中每一数据和他对应的类别。 2.当输入一个...

python机器学习理论与实战(五)支持向量机

python机器学习理论与实战(五)支持向量机

       做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深...

Python面向对象编程之继承与多态详解

Python面向对象编程之继承与多态详解

本文实例讲述了Python面向对象编程之继承与多态。分享给大家供大家参考,具体如下: Python 类的继承 在OOP(Object Oriented Programming)程序设计中...