TensorFlow利用saver保存和提取参数的实例

yipeiwu_com5年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python闭包函数定义与用法分析

本文实例分析了Python闭包函数定义与用法。分享给大家供大家参考,具体如下: python的闭包 首先python闭包的作用,一个是自带作用域,另一个是延迟计算。 闭包是装饰器的基础。...

使用 Visual Studio Code(VSCode)搭建简单的Python+Django开发环境的方法步骤

使用 Visual Studio Code(VSCode)搭建简单的Python+Django开发环境的方法步骤

写在前面的话 作为有个 Python 菜逼,之前一直用的 Pycharm,但是在主题这一块怎么调整都感觉要么太骚,看起来不舒服,要么就是简直不能看。似乎用大 JB 公司 IDE 的人似乎...

Python3.x和Python2.x的区别介绍

1.性能Py3.0运行 pystone benchmark的速度比Py2.5慢30%。Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可以取得很好的优化结果。Py3.1性能...

Python中的Socket 与 ScoketServer 通信及遇到问题解决方法

Socket有一个缓冲区,缓冲区是一个流,先进先出,发送和取出的可自定义大小的,如果取出的数据未取完缓冲区,则可能存在数据怠慢。其中【recv(1024)】表示从缓冲区里取最大为1024...

python 数据提取及拆分的实现代码

python 数据提取及拆分的实现代码

K线数据提取 依据原有数据集格式,按要求生成新表: 1、每分钟的close数据的第一条、最后一条、最大值及最小值, 2、每分钟vol数据的增长量(每分钟vol的最后一条数据减第一条数据...