TensorFlow利用saver保存和提取参数的实例

yipeiwu_com5年前Python基础

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

global_step是训练的第几步

保存参数:

import tensorflow as tf
 
W = tf.Variable([[1, 2, 3]], dtype=tf.float32)
b = tf.Variable([[1]], dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 必须要指定文件夹,保存到ckpt文件
save_path = saver.save(sess, "winycg/1.ckpt")
print(save_path)

一次 saver.save() 后可以在文件夹中看到新增的四个文件,实际上每调用一次保存操作会创建后3个数据文件并创建一个检查点(checkpoint)文件,简单理解就是权重等参数被保存到 .chkp.data 文件中,以字典的形式;图和元数据被保存到 .chkp.meta 文件中,可以被 tf.train.import_meta_graph 加载到当前默认的图。

读取参数:

import tensorflow as tf
import numpy as np
 
W = tf.Variable(np.arange(3).reshape(1, 3), dtype=tf.float32)
b = tf.Variable(np.arange(1).reshape(1, 1), dtype=tf.float32)
 
saver = tf.train.Saver()
 
sess = tf.InteractiveSession()
# 读取参数时不需要global_variables_initializer()
save_path = saver.restore(sess, "parameter/1.ckpt")
print("weights:", sess.run(W))
print("bias:", sess.run(b))

weights: [[ 1. 2. 3.]]

bias: [[ 1.]]

以上这篇TensorFlow利用saver保存和提取参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django框架forms组件用法实例详解

django框架forms组件用法实例详解

本文实例讲述了django框架forms组件用法。分享给大家供大家参考,具体如下: 在django中forms组件有其强大的功能,里面集合和众多的函数和方法:下面来看一下它的源码 "...

带你认识Django

Django简介: Django,发音为[`dʒæŋɡəʊ],是用python语言写的开源web开发框架,并遵循MVC设计。劳伦斯出版...

Python concurrent.futures模块使用实例

这篇文章主要介绍了Python concurrent.futures模块使用实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 con...

采用python实现简单QQ单用户机器人的方法

采用python实现简单QQ单用户机器人的方法如下: 一、首先我们查看一下关于3GQQ的相关协议:     对此,打开一个支持WAP的浏览器,可以使用Fir...

python编写的最短路径算法

python编写的最短路径算法

一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法。算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录...