对Tensorflow中的变量初始化函数详解

yipeiwu_com6年前Python基础

Tensorflow 提供了7种不同的初始化函数:

tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值。

假设在卷积层中,设置偏执项b为0,则写法为:
1. bias_initializer=tf.constant_initializer(0)
2. bias_initializer=tf.zeros_initializer(0)

tf.random_normal_initializer(mean,stddev) #功能是将变量初始化为满足正太分布的随机值,主要参数(正太分布的均值和标准差),用所给的均值和标准差初始化均匀分布

tf.truncated_normal_initializer(mean,stddev,seed,dtype) #功能:将变量初始化为满足正太分布的随机值,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机

mean:用于指定均值;stddev用于指定标准差;seed:用于指定随机数种子;dtype:用于指定随机数的数据类型。
通常只需要设定一个标准差stddev这一个参数就可以。

tf.random_uniform_initializer(a,b,seed,dtype) #从a到b均匀初始化,将变量初始化为满足平均分布的随机值,主要参数(最大值,最小值)

tf.uniform_unit_scaling_initializer(factor,seed,dtypr) #将变量初始化为满足平均分布但不影响输出数量级的随机值

max_val=math.sqrt(3/input_size)*factor;
input_size指输入数据的维数,假设输入为x,计算为x*w,则input_size=w.shape[0].
其分布区间为[-max_val,max_val]

tf.zeros_initializer() #将变量设置为全0;也可以简写为tf.Zeros()

tf.ones_initializer() #将变量设置为全1;可简写为tf.Ones()

以上这篇对Tensorflow中的变量初始化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解用python写一个抽奖程序

第一次使用python写程序,确实比C/C++之类方便许多。既然这个抽奖的数据不大,对效率要求并不高,所以采用python写,更加简洁、清晰、方便。 1.用到的模块 生成随机数的模...

python实现双色球随机选号

本文实例为大家分享了python实现双色球随机选号的具体代码,供大家参考,具体内容如下 双色球随机选号实现代码 from random import randrange, randi...

python基础教程之数字处理(math)模块详解

1.math简介复制代码 代码如下:>>> import math>>>dir(math)     ...

对Django 中request.get和request.post的区别详解

Django 中request.get和request.post的区别 POST和GET差异: POST和GET是HTTP协议定义的与服务器交互的方法。GET一般用于获取/查询资源信息,...

python实现自动登录人人网并访问最近来访者实例

本文实例讲述了python实现自动登录人人网并访问最近来访者的方法,分享给大家供大家参考。 具体方法如下: ##-*- coding : gbk -*- #在 import os...