对Tensorflow中的变量初始化函数详解

yipeiwu_com5年前Python基础

Tensorflow 提供了7种不同的初始化函数:

tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值。

假设在卷积层中,设置偏执项b为0,则写法为:
1. bias_initializer=tf.constant_initializer(0)
2. bias_initializer=tf.zeros_initializer(0)

tf.random_normal_initializer(mean,stddev) #功能是将变量初始化为满足正太分布的随机值,主要参数(正太分布的均值和标准差),用所给的均值和标准差初始化均匀分布

tf.truncated_normal_initializer(mean,stddev,seed,dtype) #功能:将变量初始化为满足正太分布的随机值,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机

mean:用于指定均值;stddev用于指定标准差;seed:用于指定随机数种子;dtype:用于指定随机数的数据类型。
通常只需要设定一个标准差stddev这一个参数就可以。

tf.random_uniform_initializer(a,b,seed,dtype) #从a到b均匀初始化,将变量初始化为满足平均分布的随机值,主要参数(最大值,最小值)

tf.uniform_unit_scaling_initializer(factor,seed,dtypr) #将变量初始化为满足平均分布但不影响输出数量级的随机值

max_val=math.sqrt(3/input_size)*factor;
input_size指输入数据的维数,假设输入为x,计算为x*w,则input_size=w.shape[0].
其分布区间为[-max_val,max_val]

tf.zeros_initializer() #将变量设置为全0;也可以简写为tf.Zeros()

tf.ones_initializer() #将变量设置为全1;可简写为tf.Ones()

以上这篇对Tensorflow中的变量初始化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中在脚本中引用其他文件函数的实现方法

在导入文件的时候,Python只搜索当前脚本所在的目录,加载(entry-point)入口脚本运行目录和sys.path中包含的路径例如包的安装地址。所以如果要在当前脚本引用其他文件,除...

使用django的objects.filter()方法匹配多个关键字的方法

介绍: 今天在使用django的时候忽然想用到,如何匹配多个关键字的操作,我们知道django有一个objects.filter()方法,我们可以通过如下一句代码实现匹配数据库中titl...

python查看模块,对象的函数方法

python查看模块,对象的函数方法

这段时间在用libev的python版本事件模型,总共只有一个py.so文件,没有.py文件查看源码查看接口,最开始用shell命令直接查看.so的接口不尽人意。然后发现python提供...

实例讲解Python设计模式编程之工厂方法模式的使用

实例讲解Python设计模式编程之工厂方法模式的使用

工厂方法模式是简单工厂模式的进一步抽象和推广,它不仅保持了简单工厂模式能够向客户隐藏类的实例化过程这一优点,而且还通过多态性克服了工厂类过于复杂且不易于扩展的缺点。在工厂方法模式中,处于...

详解Python函数可变参数定义及其参数传递方式

Python函数可变参数定义及其参数传递方式详解 python中 函数不定参数的定义形式如下 1、 func(*args)  传入的参数为以元组形式存在args...