Tensorflow 同时载入多个模型的实例讲解

yipeiwu_com5年前Python基础

有时我们希望在一个python的文件空间同时载入多个模型,例如 我们建立了10个CNN模型,然后我们又写了一个预测类Predict,这个类会从已经保存好的模型restore恢复相应的图结构以及模型参数。然后我们会创建10个Predict的对象Instance,每个Instance负责一个模型的预测。

Predict的核心为:

class Predict:
 def __init__(self....):
  创建sess
  创建恢复器tf.train.Saver
  从恢复点恢复参数:tf.train.Saver.restore(...)


 def predict(self,...):
  sess.run(output,feed_dict={输入})

如果我们直接轮流生成10个不同的Predict 对象的话,我们发现tensorflow是会报类似于下面的错误:

 File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
 pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256,512] rhs shape= [640,512]
   [[Node: save/Assign_14 = Assign[T=DT_FLOAT, _class=["loc:@fullcont/Variable"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/cpu:0"](fullcont/Variable, save/RestoreV2_14)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "PREDICT_WITH_SPARK_DATAFLOW_WA.py", line 121, in <module>
 pre2=Predict(label=new_list[1])
 File "PREDICT_WITH_SPARK_DATAFLOW_WA.py", line 47, in __init__
 self.saver.restore(self.sess,self.ckpt.model_checkpoint_path)
 File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1560, in restore
 {self.saver_def.filename_tensor_name: save_path})
 File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 895, in run
 run_metadata_ptr)
 File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1124, in _run
 feed_dict_tensor, options, run_metadata)
 File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1321, in _do_run
 options, run_metadata)
 File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1340, in _do_call
 raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256,512] rhs shape= [640,512]

关键就是:

Assign requires shapes of both tensors to match.意思是载入模型的时候 赋值失败。主要是因为不同对象里面的不同sess使用了同一进程空间下的相同的默认图graph。

正确的解决方法:

class Predict:
 def __init__(self....):
  self.graph=tf.Graph()#为每个类(实例)单独创建一个graph
  with self.graph.as_default():
    self.saver=tf.train.import_meta_graph(...)#创建恢复器
    #注意!恢复器必须要在新创建的图里面生成,否则会出错。
  self.sess=tf.Session(graph=self.graph)#创建新的sess
  with self.sess.as_default():
    with self.graph.as_default():
     self.saver.restore(self.sess,...)#从恢复点恢复参数

 def predict(self,...):
  sess.run(output,feed_dict={输入})

以上这篇Tensorflow 同时载入多个模型的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python subprocess 杀掉全部派生的子进程方法

下面就是今天下午的研究成果。 发布系统需要响应用户的中断请求,需要在GET方法中杀掉由subprocess派生的子进程,刚开始直接用os.kill 发现子进程的子进程无法kill,谷歌了...

Python编程使用tkinter模块实现计算器软件完整代码示例

Python编程使用tkinter模块实现计算器软件完整代码示例

Python 提供了多个图形开发界面的库。Tkinter就是其中之一。 Tkinter 模块(Tk 接口)是 Python 的标准 Tk GUI 工具包的接口 .Tk 和 Tkinter...

使用GitHub和Python实现持续部署的方法

使用GitHub和Python实现持续部署的方法

借助 GitHub 的网络钩子webhook,开发者可以创建很多有用的服务。从触发一个 Jenkins 实例上的 CI(持续集成) 任务到配置云中的机器,几乎有着无限的可能性。这篇教程将...

Python下Fabric的简单部署方法

Fabric是一个用Python开发的部署工具,最大特点是不用登录远程服务器,在本地运行远程命令,几行Python脚本就可以轻松部署。 文档入口 简单安装 sudo easy_ins...

在Python 字典中一键对应多个值的实例

如下所示: #encoding=utf-8 print '中国' #字典的一键多值 print'方案一 list作为dict的值 值允许重复' d1={} key=1...