对TensorFlow的assign赋值用法详解

yipeiwu_com5年前Python基础

TensorFlow修改变量值后,需要重新赋值,assign用起来有点小技巧,就是需要需要弄个操作子,运行一下。

下面这么用是不行的

import tensorflow as tf
import numpy as np
 
x = tf.Variable(0)
init = tf.initialize_all_variables()
sess = tf.InteractiveSession()
sess.run(init)
 
print(x.eval())
 
x.assign(1)
print(x.eval())

正确用法

1.

import tensorflow as tf
x = tf.Variable(0)
y = tf.assign(x, 1)
with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 print sess.run(x)
 print sess.run(y)
 print sess.run(x)

2.

In [212]: w = tf.Variable(12)
In [213]: w_new = w.assign(34)
 
In [214]: with tf.Session() as sess:
  ...:  sess.run(w_new)
  ...:  print(w_new.eval())
 
# output
34 

3.

import tensorflow as tf
x = tf.Variable(0)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(x)) # Prints 0.
x.load(1, sess)
print(sess.run(x)) # Prints 1.

我的方法

import numpy as np #这是Python的一种开源的数值计算扩展,非常强大
import tensorflow as tf #导入tensorflow 

##构造数据##
x_data=np.random.rand(100).astype(np.float32) #随机生成100个类型为float32的值
y_data=x_data*0.1+0.3 #定义方程式y=x_data*A+B
##-------##

##建立TensorFlow神经计算结构##
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0)) 
biases=tf.Variable(tf.zeros([1]))  
y=weight*x_data+biases

w1=weight*2

loss=tf.reduce_mean(tf.square(y-y_data)) #判断与正确值的差距
optimizer=tf.train.GradientDescentOptimizer(0.5) #根据差距进行反向传播修正参数
train=optimizer.minimize(loss) #建立训练器

init=tf.global_variables_initializer() #初始化TensorFlow训练结构
#sess=tf.Session() #建立TensorFlow训练会话
sess = tf.InteractiveSession() 
sess.run(init)  #将训练结构装载到会话中
print('weight',weight.eval())
for step in range(400): #循环训练400次
  sess.run(train) #使用训练器根据训练结构进行训练
  if step%20==0: #每20次打印一次训练结果
  print(step,sess.run(weight),sess.run(biases)) #训练次数,A值,B值
  
print(sess.run(loss))  
print('weight new',weight.eval())


#wop=weight.assign([3])
#wop.eval()
weight.load([1],sess)
print('w1',w1.eval())

以上这篇对TensorFlow的assign赋值用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python closure闭包解释及其注意点详解

Python closure闭包解释及其注意点详解

一、闭包 1.定义:当一个函数在内部定义函数,并且内部的函数应用外部函数的参数或者局部变量,当内部函数被当做返回值的时候,相关参数和变量保存在返回的函数之中,这种结果,叫做闭包。 2.例...

python matplotlib绘图,修改坐标轴刻度为文字的实例

python matplotlib绘图,修改坐标轴刻度为文字的实例

工作中偶尔需要做客流分析,用pyplot 库绘图。一般情况下, x 轴刻度默认显示为数字。 例如: 我希望x 轴刻度显示为星期日期。 查询pyplot 文档, 发现了 xtick()...

pycharm下查看python的变量类型和变量内容的方法

pycharm下查看python的变量类型和变量内容的方法

用过Matlab的同学基本都知道,程序里面的变量内容可以很方便的查看到,但python确没这么方便,对于做数据处理的很不方便,其实不是没有这个功能,只是没有发现而已,今天整理一下供大家相...

python实现剪切功能

python实现剪切功能

本文实例为大家分享了python实现剪切功能的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python #coding: utf8 import sys m...

简析Python的闭包和装饰器

简析Python的闭包和装饰器

什么是装饰器? 装饰器(Decorator)相对简单,咱们先介绍它:“装饰器的功能是将被装饰的函数当作参数传递给与装饰器对应的函数(名称相同的函数),并返回包装后的被装饰的函数”,听起来...