tensorflow 打印内存中的变量方法

yipeiwu_com6年前Python基础

法一:

循环打印

模板

for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):
 print '\n', x, y

实例

# coding=utf-8

import tensorflow as tf


def func(in_put, layer_name, is_training=True):
 with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
  bn = tf.contrib.layers.batch_norm(inputs=in_put,
           decay=0.9,
           is_training=is_training,
           updates_collections=None)
 return bn

def main():

 with tf.Graph().as_default():
  # input_x
  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])
  import numpy as np
  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])
  # outputs
  output = func(input_x, 'my', is_training=True)
  with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   t = sess.run(output, feed_dict={input_x:i_p})

   # 法一: 循环打印
   for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):
    print '\n', x, y

if __name__ == "__main__":
 main()
2017-09-29 10:10:22.714213: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)

<tf.Variable 'my/BatchNorm/beta:0' shape=(1,) dtype=float32_ref> [ 0.]

<tf.Variable 'my/BatchNorm/moving_mean:0' shape=(1,) dtype=float32_ref> [ 13.46412563]

<tf.Variable 'my/BatchNorm/moving_variance:0' shape=(1,) dtype=float32_ref> [ 452.62246704]

Process finished with exit code 0

法二:

指定变量名打印

模板

print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))

实例

# coding=utf-8

import tensorflow as tf


def func(in_put, layer_name, is_training=True):
 with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
  bn = tf.contrib.layers.batch_norm(inputs=in_put,
           decay=0.9,
           is_training=is_training,
           updates_collections=None)
 return bn

def main():

 with tf.Graph().as_default():
  # input_x
  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])
  import numpy as np
  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])
  # outputs
  output = func(input_x, 'my', is_training=True)
  with tf.Session() as sess:
   sess.run(tf.global_variables_initializer())
   t = sess.run(output, feed_dict={input_x:i_p})

   # 法二: 指定变量名打印
   print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))
   print 'my/BatchNorm/moving_mean:0', (sess.run('my/BatchNorm/moving_mean:0'))
   print 'my/BatchNorm/moving_variance:0', (sess.run('my/BatchNorm/moving_variance:0'))

if __name__ == "__main__":
 main()
2017-09-29 10:12:41.374055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)

my/BatchNorm/beta:0 [ 0.]
my/BatchNorm/moving_mean:0 [ 8.08649635]
my/BatchNorm/moving_variance:0 [ 368.03442383]

Process finished with exit code 0

以上这篇tensorflow 打印内存中的变量方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas的排序和排名的具体使用

有的时候我们可以要根据索引的大小或者值的大小对Series和DataFrame进行排名和排序。 一、排序 pandas提供了sort_index方法可以根据行或列的索引按照字典的顺序进...

Python中的各种装饰器详解

Python装饰器,分两部分,一是装饰器本身的定义,一是被装饰器对象的定义。 一、函数式装饰器:装饰器本身是一个函数。 1.装饰函数:被装饰对象是一个函数 [1]装饰器无参数: a.被装...

详解Python中如何写控制台进度条的整理

详解Python中如何写控制台进度条的整理

本文实例讲述了Python显示进度条的方法,是Python程序设计中非常实用的技巧。分享给大家供大家参考。具体方法如下: 首先,进度条和一般的print区别在哪里呢? 答案就是print...

Python编程之列表操作实例详解【创建、使用、更新、删除】

Python编程之列表操作实例详解【创建、使用、更新、删除】

本文实例讲述了Python列表操作。分享给大家供大家参考,具体如下: #coding=utf8 ''''' 列表类型也是序列式的数据类型, 可以通过下标或者切片操作来访问某一个或者某...

python 并发编程 非阻塞IO模型原理解析

python 并发编程 非阻塞IO模型原理解析

非阻塞IO(non-blocking IO) Linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是...