python开启摄像头以及深度学习实现目标检测方法

yipeiwu_com5年前Python基础

最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般。利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的)。看来opencv对于摄像头的兼容性仍然不是很完善。

我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开。最后采用pygame实现了摄像头的采集功能,这里直接给大家分享具体实现代码(python3.6,cv2,opencv3.3,ubuntu16.04)。中间注释的部分是我上述方法打开摄像头的尝试,说不定有适合自己的。

import pygame.camera
import time
import pygame
import cv2
import numpy as np
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return image_np, frame
 
 
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(0.1)
screen = pygame.display.set_mode([640, 480])
 
while True:
 image = cam.get_image()
 
 cv_image, frame = pygame_to_cvimage(image)
 
 screen.fill([0, 0, 0])
 screen.blit(image, (0, 0))
 pygame.display.update()
 cv2.imshow('frame', frame)
 key = cv2.waitKey(1)
 if key & 0xFF == ord('q'):
  break
 
 
 #pygame.image.save(image, "pygame1.jpg")
 
cam.stop()
 
 
 

上述代码需要注意一个地方,就是pygame图片和opencv图片的转化(pygame_to_cvimage)有些地方采用cv.CreateImageHeader和SetData来实现,注意这两个函数在opencv3+后就消失了。因此采用numpy进行实现。

至于目标检测,由于现在网上有很多实现的方法,MobileNet等等。这里我不讲解具体原理,因为我的研究方向不是这个,这里直接把代码贴出来,亲测成功了。

from imutils.video import FPS
import argparse
import imutils
 
 
import v4l2
import fcntl
 
import v4l2capture
import select
import image
 
import pygame.camera
import pygame
import cv2
import numpy as np
import time
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return frame
 
 
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True, help="path to caffe deploy prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to caffe pretrained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detection")
args = vars(ap.parse_args())
 
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
   "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
 
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
 
 
print("[INFO] starting video stream ...")
 
###### opencv ########
#vs = VideoStream(src=1).start()
#
#camera = cv2.VideoCapture(0)
#if not camera.isOpened():
# print("camera is not open")
#time.sleep(2.0)
 
 
###### v4l2 ########
 
#vd = open('/dev/video0', 'r')
#cp = v4l2.v4l2_capability()
#fcntl.ioctl(vd, v4l2.VIDIOC_QUERYCAP, cp)
 
#cp.driver
 
 
##### v4l2_capture
#video = v4l2capture.Video_device("/dev/video0")
#size_x, size_y = video.set_format(640, 480, fourcc= 'MJPEG')
#video.create_buffers(30)
 
#video.queue_all_buffers()
 
#video.start()
 
##### pygame ####
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(1)
 
fps = FPS().start()
 
 
while True:
 #try:
 # frame = vs.read()
 #except:
 # print("camera is not opened")
 
 #frame = imutils.resize(frame, width=400)
 #(h, w) = frame.shape[:2]
 
 
 #grabbed, frame = camera.read()
 #if not grabbed:
 # break
 #select.select((video,), (), ())
 #frame = video.read_and_queue()
 
 #npfs = np.frombuffer(frame, dtype=np.uint8)
 #print(len(npfs))
 #frame = cv2.imdecode(npfs, cv2.IMREAD_COLOR)
 
 image = cam.get_image()
 frame = pygame_to_cvimage(image)
 
 frame = imutils.resize(frame, width=640)
 blob = cv2.dnn.blobFromImage(frame, 0.00783, (640, 480), 127.5)
 
 net.setInput(blob)
 detections = net.forward()
 
 for i in np.arange(0, detections.shape[2]):
 
  confidence = detections[0, 0, i, 2]
 
  if confidence > args["confidence"]:
 
   idx = int(detections[0, 0, i, 1])
   box = detections[0, 0, i, 3:7]*np.array([640, 480, 640, 480])
   (startX, startY, endX, endY) = box.astype("int")
 
   label = "{}:{:.2f}%".format(CLASSES[idx], confidence*100)
   cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
   y = startY - 15 if startY - 15 > 15 else startY + 15
 
   cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
 
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1)& 0xFF
 
 if key ==ord("q"):
  break
 
 
fps.stop()
print("[INFO] elapsed time :{:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS :{:.2f}".format(fps.fps()))
 
 
 
cv2.destroyAllWindows()
 
#vs.stop()
 

上面的实现需要用到两个文件,是caffe实现好的模型,我直接上传(文件名为MobileNetSSD_deploy.caffemodel和MobileNetSSD_deploy.prototxt,上google能够下载到)。

以上这篇python开启摄像头以及深度学习实现目标检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django web框架使用url path name详解

Django web框架使用url path name详解

quicktool/view.py文件修改视图函数index(),渲染一个home.html模板 from django.shortcuts import render def in...

Python黑魔法@property装饰器的使用技巧解析

@property有什么用呢?表面看来,就是将一个方法用属性的方式来访问. 上代码,代码最清晰了. class Circle(object): def __init__...

python树的同构学习笔记

python树的同构学习笔记

一、题意理解 给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构的”。现给定两棵树,请你判断它们是否是同构的。 输入格式:输入给出2棵二叉树的信...

Python list列表中删除多个重复元素操作示例

本文实例讲述了Python list列表中删除多个重复元素操作。分享给大家供大家参考,具体如下: 我们以下面这个list为例,删除其中所有值为6的元素: l=[9,6,5,6,6,7...

python实现文本进度条 程序进度条 加载进度条 单行刷新功能

python实现文本进度条 程序进度条 加载进度条 单行刷新功能,具体内容如下所示: 利用time库来替代某个程序 的进行过程,做实例, 思路是,简单打印出来程序进度 单行刷新关键是\r...