python开启摄像头以及深度学习实现目标检测方法

yipeiwu_com5年前Python基础

最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般。利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的)。看来opencv对于摄像头的兼容性仍然不是很完善。

我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开。最后采用pygame实现了摄像头的采集功能,这里直接给大家分享具体实现代码(python3.6,cv2,opencv3.3,ubuntu16.04)。中间注释的部分是我上述方法打开摄像头的尝试,说不定有适合自己的。

import pygame.camera
import time
import pygame
import cv2
import numpy as np
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return image_np, frame
 
 
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(0.1)
screen = pygame.display.set_mode([640, 480])
 
while True:
 image = cam.get_image()
 
 cv_image, frame = pygame_to_cvimage(image)
 
 screen.fill([0, 0, 0])
 screen.blit(image, (0, 0))
 pygame.display.update()
 cv2.imshow('frame', frame)
 key = cv2.waitKey(1)
 if key & 0xFF == ord('q'):
  break
 
 
 #pygame.image.save(image, "pygame1.jpg")
 
cam.stop()
 
 
 

上述代码需要注意一个地方,就是pygame图片和opencv图片的转化(pygame_to_cvimage)有些地方采用cv.CreateImageHeader和SetData来实现,注意这两个函数在opencv3+后就消失了。因此采用numpy进行实现。

至于目标检测,由于现在网上有很多实现的方法,MobileNet等等。这里我不讲解具体原理,因为我的研究方向不是这个,这里直接把代码贴出来,亲测成功了。

from imutils.video import FPS
import argparse
import imutils
 
 
import v4l2
import fcntl
 
import v4l2capture
import select
import image
 
import pygame.camera
import pygame
import cv2
import numpy as np
import time
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return frame
 
 
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True, help="path to caffe deploy prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to caffe pretrained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detection")
args = vars(ap.parse_args())
 
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
   "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
 
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
 
 
print("[INFO] starting video stream ...")
 
###### opencv ########
#vs = VideoStream(src=1).start()
#
#camera = cv2.VideoCapture(0)
#if not camera.isOpened():
# print("camera is not open")
#time.sleep(2.0)
 
 
###### v4l2 ########
 
#vd = open('/dev/video0', 'r')
#cp = v4l2.v4l2_capability()
#fcntl.ioctl(vd, v4l2.VIDIOC_QUERYCAP, cp)
 
#cp.driver
 
 
##### v4l2_capture
#video = v4l2capture.Video_device("/dev/video0")
#size_x, size_y = video.set_format(640, 480, fourcc= 'MJPEG')
#video.create_buffers(30)
 
#video.queue_all_buffers()
 
#video.start()
 
##### pygame ####
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(1)
 
fps = FPS().start()
 
 
while True:
 #try:
 # frame = vs.read()
 #except:
 # print("camera is not opened")
 
 #frame = imutils.resize(frame, width=400)
 #(h, w) = frame.shape[:2]
 
 
 #grabbed, frame = camera.read()
 #if not grabbed:
 # break
 #select.select((video,), (), ())
 #frame = video.read_and_queue()
 
 #npfs = np.frombuffer(frame, dtype=np.uint8)
 #print(len(npfs))
 #frame = cv2.imdecode(npfs, cv2.IMREAD_COLOR)
 
 image = cam.get_image()
 frame = pygame_to_cvimage(image)
 
 frame = imutils.resize(frame, width=640)
 blob = cv2.dnn.blobFromImage(frame, 0.00783, (640, 480), 127.5)
 
 net.setInput(blob)
 detections = net.forward()
 
 for i in np.arange(0, detections.shape[2]):
 
  confidence = detections[0, 0, i, 2]
 
  if confidence > args["confidence"]:
 
   idx = int(detections[0, 0, i, 1])
   box = detections[0, 0, i, 3:7]*np.array([640, 480, 640, 480])
   (startX, startY, endX, endY) = box.astype("int")
 
   label = "{}:{:.2f}%".format(CLASSES[idx], confidence*100)
   cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
   y = startY - 15 if startY - 15 > 15 else startY + 15
 
   cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
 
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1)& 0xFF
 
 if key ==ord("q"):
  break
 
 
fps.stop()
print("[INFO] elapsed time :{:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS :{:.2f}".format(fps.fps()))
 
 
 
cv2.destroyAllWindows()
 
#vs.stop()
 

上面的实现需要用到两个文件,是caffe实现好的模型,我直接上传(文件名为MobileNetSSD_deploy.caffemodel和MobileNetSSD_deploy.prototxt,上google能够下载到)。

以上这篇python开启摄像头以及深度学习实现目标检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python对象与json相互转换的方法

在网络通信中,json是一种常用的数据格式,对于python来讲,将类转化为json数据以及将json数据转化为对象是一件非常容易的事情。 下面给出两者转化的方法 # -*- cod...

python3实现小球转动抽奖小游戏

python3实现小球转动抽奖小游戏

最近老师在讲 tkinter,所以我做了一个抽奖小游戏。 一、效果图 先上效果图。红色的小球会围绕蓝色小球做环形运动。我设置的四个角是奖品,其余的都是再接再厉。 二、方法 基于tkin...

python自动化测试之连接几组测试包实例

本文实例讲述了python自动化测试之连接几组测试包的方法,分享给大家供大家参考。具体方法如下: 具体代码如下: class RomanNumeralConverter(object...

Python编程实现删除VC临时文件及Debug目录的方法

本文实例讲述了Python编程实现删除VC临时文件及Debug目录的方法。分享给大家供大家参考,具体如下: # *_* coding=gb2312 *-* import os imp...

Python基于PycURL自动处理cookie的方法

本文实例讲述了Python基于PycURL自动处理cookie的方法。分享给大家供大家参考。具体如下: import pycurl import StringIO url = "ht...