django_orm查询性能优化方法

yipeiwu_com5年前Python基础

查询操作和性能优化

1.基本操作

models.Tb1.objects.create(c1='xx', c2='oo') 增加一条数据,可以接受字典类型数据 **kwargs
 
obj = models.Tb1(c1='xx', c2='oo')
obj.save()

models.Tb1.objects.get(id=123)     # 获取单条数据,不存在则报错(不建议)
models.Tb1.objects.all()        # 获取全部
models.Tb1.objects.filter(name='seven') # 获取指定条件的数据
models.Tb1.objects.exclude(name='seven') # 获取指定条件的数据


models.Tb1.objects.filter(name='seven').delete() # 删除指定条件的数据


models.Tb1.objects.filter(name='seven').update(gender='0') # 将指定条件的数据更新,均支持 **kwargs
obj = models.Tb1.objects.get(id=1)
obj.c1 = '111'
obj.save()                         # 修改单条数据

2.Foreign key的使用原因

  • 约束
  • 节省硬盘

但是多表查询会降低速度,大型程序反而不使用外键,而是用单表(约束的时候,通过代码判断)

extra

extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
  Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
  Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
  Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
  Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

F查询

from django.db.models import F
  models.Tb1.objects.update(num=F('num')+1)

Q查询

方式一:

  Q(nid__gt=10)
  Q(nid=8) | Q(nid__gt=10)
  Q(Q(nid=8) | Q(nid__gt=10)) & Q(caption='root')

方式二:
 

  con = Q()
  q1 = Q()
  q1.connector = 'OR'
  q1.children.append(('id', 1))
  q1.children.append(('id', 10))
  q1.children.append(('id', 9))
  q2 = Q()
  q2.connector = 'OR'
  q2.children.append(('c1', 1))
  q2.children.append(('c1', 10))
  q2.children.append(('c1', 9))
  con.add(q1, 'AND')
  con.add(q2, 'AND')
 
  models.Tb1.objects.filter(con)

exclude(self, *args, **kwargs)

# 条件查询
 # 条件可以是:参数,字典,Q

select_related(self, *fields)

性能相关:表之间进行join连表操作,一次性获取关联的数据。

  model.tb.objects.all().select_related()
  model.tb.objects.all().select_related('外键字段')
  model.tb.objects.all().select_related('外键字段__外键字段')

prefetch_related(self, *lookups)

性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询  在内存中做关联,而不会再做连表查询

# 第一次 获取所有用户表
# 第二次 获取用户类型表where id in (用户表中的查到的所有用户ID)
models.UserInfo.objects.prefetch_related('外键字段')

annotate(self, *args, **kwargs)

# 用于实现聚合group by查询
from django.db.models import Count, Avg, Max, Min, Sum
 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
# SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id
v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
# SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1
v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
# SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1

extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)

# 构造额外的查询条件或者映射,如:子查询
Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid'])

reverse(self):

# 倒序
 models.UserInfo.objects.all().order_by('-nid').reverse()
# 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序

下面两个 取到的是对象,并且注意 取到的对象可以 获取其他字段(这样会再去查找该字段降低性能

defer(self, *fields):

models.UserInfo.objects.defer('username','id')
或
models.UserInfo.objects.filter(...).defer('username','id')
# 映射中排除某列数据

only(self, *fields):

# 仅取某个表中的数据
models.UserInfo.objects.only('username','id')
或
models.UserInfo.objects.filter(...).only('username','id')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。  

相关文章

python设置环境变量的原因和方法

python设置环境变量的原因和方法

相信很多初学python的小伙伴都会遇到这样的坑:环境变量配置不好,无法正常启动python。那么环境变量究竟是个什么东西呢?为什么要设置它?下面我们来说一说。 1、什么是环境变量 引用...

Python fileinput模块使用实例

fileinput模块可以遍历文本文件的所有行.它的工作方式和readlines很类似,不同点在于,它不是将全部的行读到列表中而是创建了一个xreadlines对象. 下面是filein...

Python编写一个验证码图片数据标注GUI程序附源码

Python编写一个验证码图片数据标注GUI程序附源码

做验证码图片的识别,不论是使用传统的ORC技术,还是使用统计机器学习或者是使用深度学习神经网络,都少不了从网络上采集大量相关的验证码图片做数据集样本来进行训练。 采集验证码图片,可以直接...

python判断图片宽度和高度后删除图片的方法

本文实例讲述了python判断图片宽度和高度后删除图片的方法。分享给大家供大家参考。具体分析如下: Image对象有open方法却没有close方法,如果打开图片,判断图片高度和宽度,判...

python使用PIL和matplotlib获取图片像素点并合并解析

python使用PIL和matplotlib获取图片像素点并合并解析

python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Pytho...