有关Python的22个编程技巧

yipeiwu_com5年前Python基础

1. 原地交换两个数字

Python 提供了一个直观的在一行代码中赋值与交换(变量值)的方法,请参见下面的示例:

x,y= 10,20
print(x,y)
x,y= y,x
print(x,y)
#1 (10, 20)
#2 (20, 10)

赋值的右侧形成了一个新的元组,左侧立即解析(unpack)那个(未被引用的)元组到变量 <a> 和 <b>。

一旦赋值完成,新的元组变成了未被引用状态并且被标记为可被垃圾回收,最终也完成了变量的交换。

2. 链状比较操作符

比较操作符的聚合是另一个有时很方便的技巧:

n= 10
result= 1< n< 20
print(result)
# True
result= 1> n<= 9
print(result)
# False

3. 使用三元操作符来进行条件赋值

三元操作符是 if-else 语句也就是条件操作符的一个快捷方式:

[表达式为真的返回值] if [表达式] else [表达式为假的返回值]

这里给出几个你可以用来使代码紧凑简洁的例子。下面的语句是说“如果 y 是 9,给 x 赋值 10,不然赋值为 20”。如果需要的话我们也可以延长这条操作链。

x = 10 if (y == 9) else 20

同样地,我们可以对类做这种操作:

x = (classA if y == 1 else classB)(param1, param2)

在上面的例子里 classA 与 classB 是两个类,其中一个类的构造函数会被调用。

下面是另一个多个条件表达式链接起来用以计算最小值的例子:

def small(a,b,c):
returnaifa<= banda<= celse(bifb<= aandb<= celsec)
print(small(1,0,1))
print(small(1,2,2))
print(small(2,2,3))
print(small(5,4,3))
#Output
#0 #1 #2 #3

我们甚至可以在列表推导中使用三元运算符:

[m**2 if m > 10 else m**4 for m in range(50)]
#=> [0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401]

4. 多行字符串

基本的方式是使用源于 C 语言的反斜杠:

multiStr= “select * from multi_row
where row_id < 5”
print(multiStr)
# select * from multi_row where row_id < 5

另一个技巧是使用三引号:

multiStr= “””select * from multi_row
where row_id < 5″””
print(multiStr)
#select * from multi_row
#where row_id < 5

上面方法共有的问题是缺少合适的缩进,如果我们尝试缩进会在字符串中插入空格。所以最后的解决方案是将字符串分为多行并且将整个字符串包含在括号中:

multiStr= (“select * from multi_row ”
“where row_id < 5 ”
“order by age”)
print(multiStr)
#select * from multi_row where row_id < 5 order by age

5. 存储列表元素到新的变量中

我们可以使用列表来初始化多个变量,在解析列表时,变量的数目不应该超过列表中的元素个数:【译者注:元素个数与列表长度应该严格相同,不然会报错】

testList= [1,2,3]
x,y,z= testList
print(x,y,z)
#-> 1 2 3

6. 打印引入模块的文件路径

如果你想知道引用到代码中模块的绝对路径,可以使用下面的技巧:

import threading
import socket
print(threading)
print(socket)
#1- <module ‘threading' from ‘/usr/lib/python2.7/threading.py'>
#2- <module ‘socket' from ‘/usr/lib/python2.7/socket.py'>

7. 交互环境下的 “_” 操作符

这是一个我们大多数人不知道的有用特性,在 Python 控制台,不论何时我们测试一个表达式或者调用一个方法,结果都会分配给一个临时变量: _(一个下划线)。

>>> 2+ 1
3
>>> _
3
>>> print_
3
“_” 是上一个执行的表达式的输出。

8. 字典/集合推导

与我们使用的列表推导相似,我们也可以使用字典/集合推导,它们使用起来简单且有效,下面是一个例子:

testDict= {i: i *iforiinxrange(10)}
testSet= {i *2foriinxrange(10)}
print(testSet)
print(testDict)
#set([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
#{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

注:两个语句中只有一个 <:> 的不同,另,在 Python3 中运行上述代码时,将 <xrange> 改为 <range>。

9. 调试脚本

我们可以在 <pdb> 模块的帮助下在 Python 脚本中设置断点,下面是一个例子:

import pdb
pdb.set_trace()

我们可以在脚本中任何位置指定 <pdb.set_trace()> 并且在那里设置一个断点,相当简便。

10. 开启文件分享

Python 允许运行一个 HTTP 服务器来从根路径共享文件,下面是开启服务器的命令:

# Python 2
python -m SimpleHTTPServer
# Python 3
python3 -m http.server

上面的命令会在默认端口也就是 8000 开启一个服务器,你可以将一个自定义的端口号以最后一个参数的方式传递到上面的命令中。

11. 检查 Python 中的对象

我们可以通过调用 dir() 方法来检查 Python 中的对象,下面是一个简单的例子:

test= [1,3,5,7]
print(dir(test))
[‘__add__', ‘__class__', ‘__contains__', ‘__delattr__', ‘__delitem__', ‘__delslice__', ‘__doc__', ‘__eq__', ‘__format__', ‘__ge__', ‘__getattribute__', ‘__getitem__', ‘__getslice__', ‘__gt__', ‘__hash__', ‘__iadd__', ‘__imul__', ‘__init__', ‘__iter__', ‘__le__', ‘__len__', ‘__lt__', ‘__mul__', ‘__ne__', ‘__new__', ‘__reduce__', ‘__reduce_ex__', ‘__repr__', ‘__reversed__', ‘__rmul__', ‘__setattr__', ‘__setitem__', ‘__setslice__', ‘__sizeof__', ‘__str__', ‘__subclasshook__', ‘append', ‘count', ‘extend', ‘index', ‘insert', ‘pop', ‘remove', ‘reverse', ‘sort']

12. 简化 if 语句

我们可以使用下面的方式来验证多个值:

if m in [1,3,5,7]:

而不是:

if m==1 or m==3 or m==5 or m==7:

或者,对于 in 操作符我们也可以使用 ‘{1,3,5,7}' 而不是 ‘[1,3,5,7]',因为 set 中取元素是 O(1) 操作。

13. 一行代码计算任何数的阶乘

Python 2.x.
result= (lambdak: reduce(int.__mul__,range(1,k+1),1))(3)
print(result)
#-> 6
Python 3.x.
import functools
result= (lambdak: functools.reduce(int.__mul__,range(1,k+1),1))(3)
print(result)
#-> 6

14. 找到列表中出现最频繁的数

test= [1,2,3,4,2,2,3,1,4,4,4]
print(max(set(test),key=test.count))
#-> 4

15. 重置递归限制

Python 限制递归次数到 1000,我们可以重置这个值:

import sys
x=1001
print(sys.getrecursionlimit())
sys.setrecursionlimit(x)
print(sys.getrecursionlimit())
#1-> 1000
#2-> 1001

请只在必要的时候采用上面的技巧。

16. 检查一个对象的内存使用

在 Python 2.7 中,一个 32 比特的整数占用 24 字节,在 Python 3.5 中利用 28 字节。为确定内存使用,我们可以调用 getsizeof 方法:

在 Python 2.7 中

import sys
x=1
print(sys.getsizeof(x))
#-> 24
在 Python 3.5 中
import sys
x=1
print(sys.getsizeof(x))
#-> 28

17. 使用 __slots__ 来减少内存开支

你是否注意到你的 Python 应用占用许多资源特别是内存?有一个技巧是使用 __slots__ 类变量来在一定程度上减少内存开支。

import sys
classFileSystem(object):
def __init__(self,files,folders,devices):
self.files= files
self.folders= folders
self.devices= devices
print(sys.getsizeof(FileSystem))
classFileSystem1(object):
__slots__= [‘files','folders','devices']
def __init__(self,files,folders,devices):
self.files= files
self.folders= folders
self.devices= devices
print(sys.getsizeof(FileSystem1))
#In Python 3.5
#1-> 1016
#2-> 888

很明显,你可以从结果中看到确实有内存使用上的节省,但是你只应该在一个类的内存开销不必要得大时才使用 __slots__。只在对应用进行性能分析后才使用它,不然地话,你只是使得代码难以改变而没有真正的益处。

【译者注:在我的 win10 python2.7 中上面的结果是:

#In Python 2.7 win10
#1-> 896
#2-> 1016

所以,这种比较方式是不那么让人信服的,使用 __slots__ 主要是用以限定对象的属性信息,另外,当生成对象很多时花销可能会小一些,具体可以参见 python 官方文档:

The slots declaration takes a sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is saved because dict is not created for each instance. 】

18. 使用 lambda 来模仿输出方法

import sys
lprint=lambda *args:sys.stdout.write(” “.join(map(str,args)))
lprint(“python”,”tips”,1000,1001)
#-> python tips 1000 1001

19.从两个相关的序列构建一个字典

t1= (1,2,3)
t2= (10,20,30)
print(dict(zip(t1,t2)))
#-> {1: 10, 2: 20, 3: 30}

20. 一行代码搜索字符串的多个前后缀

print(“http://www.google.com”.startswith((“http://”,”https://”)))
print(“http://www.google.co.uk”.endswith((“.com”,”.co.uk”)))
#1-> True
#2-> True

21. 不使用循环构造一个列表

import itertools
test= [[-1,-2],[30,40],[25,35]]
print(list(itertools.chain.from_iterable(test)))
#-> [-1, -2, 30, 40, 25, 35]

22. 在 Python 中实现一个真正的 switch-case 语句

下面的代码使用一个字典来模拟构造一个 switch-case。

def xswitch(x):
returnxswitch._system_dict.get(x,None)
xswitch._system_dict= {‘files': 10,'folders': 5,'devices': 2}
print(xswitch(‘default'))
print(xswitch(‘devices'))
#1-> None
#2-> 2

总结

以上所述是小编给大家介绍的有关Python的22个编程技巧,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!

相关文章

Python实现去除图片中指定颜色的像素功能示例

Python实现去除图片中指定颜色的像素功能示例

本文实例讲述了Python实现去除图片中指定颜色的像素功能。分享给大家供大家参考,具体如下: 这里用python去除图片白色像素 需要python和pil from PIL impo...

Python字符串处理实例详解

Python字符串处理实例详解 一、拆分含有多种分隔符的字符串 1.如何拆分含有多种分隔符的字符串 问题: 我们要把某个字符串依据分隔符号拆分不同的字段,该字符串包含多种不同的分隔符,例...

python模块smtplib实现纯文本邮件发送功能

python模块smtplib实现纯文本邮件发送功能

今天学到了如何使用Python的smtplib库发送邮件,中间也是遇到了各种各样的错误和困难,还好都一一的解决了。下面来谈一谈我的这段经历。 配置你的邮箱 为什么要配置邮箱呢?具体要配置...

Python 余弦相似度与皮尔逊相关系数 计算实例

Python 余弦相似度与皮尔逊相关系数 计算实例

夹角余弦(Cosine) 也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量...

详解python3安装pillow后报错没有pillow模块以及没有PIL模块问题解决

详解python3安装pillow后报错没有pillow模块以及没有PIL模块问题解决

也许自己真的就是有手残的毛病,你说好端端的环境配置好了,自己还在那里瞎鼓捣,我最不想看到的就是在安装一个别的模块的时候,自动卸载了本地的其他模块,每每这个时候,满满的崩溃啊,今天就是一个...