python实现机器学习之元线性回归

yipeiwu_com5年前Python基础

一、理论知识准备

1.确定假设函数

如:y=2x+7
其中,(x,y)是一组数据,设共有m个

2.误差cost

用平方误差代价函数

这里写图片描述

3.减小误差(用梯度下降)

这里写图片描述
这里写图片描述

二、程序实现步骤

1.初始化数据

x、y:样本
learning rate:学习率
循环次数loopNum:梯度下降次数

2.梯度下降

循环(循环loopNum次):
(1)算偏导(需要一个for循环遍历所有数据)
(2)利用梯度下降数学式子

三、程序代码

import numpy as np

def linearRegression(data_x,data_y,learningRate,loopNum):
  w,b=0,0

  #梯度下降
  for i in range(loopNum):
    w_derivative, b_derivative, cost = 0, 0, 0
    for j in range(len(data_x)):
      wxPlusb=w*data_x[j]+b
      w_derivative+=(wxPlusb-data_y[j])*data_x[j]
      b_derivative+=wxPlusb-data_y[j]
      cost+=(wxPlusb-data_y[j])*(wxPlusb-data_y[j])
    w_derivative=w_derivative/len(data_x)
    b_derivative=b_derivative/len(data_x)

    w = w - learningRate*w_derivative
    b = b - learningRate*b_derivative

    cost = cost/(2*len(data_x))
    if i%100==0:
      print(cost)
  print(w)
  print(b)

if __name__== "__main__": #_x:protected __x:private
  x=np.random.normal(0,10,100)
  noise=np.random.normal(0,0.05,100)
  y=2*x+7+noise
  linearRegression(x,y,0.01,5000)

四、输出

1.输出cost

这里写图片描述 

可以看到,一开始的误差是很大的,然后减小了

这里写图片描述 

最后几次输出的cost没有变化,可以将训练的次数减小一点

2.训练完的w和b

这里写图片描述 

和目标w=2,b=7很接近

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python的Flask框架中@app.route的用法教程

在我上一篇文章,我搭了一个框架,模拟了Flask网站上“@app.route(‘/')”第一条例子的行为。 如果你错过了那篇“这不是魔法”,请点击这里。 在这篇文章中,我们打算稍微调高点...

python 统计列表中不同元素的数量方法

刚刚上网搜了一下如何用python统计列表中不同元素的数量,发现很少,找了半天。我自己来写一种方法。 代码如下 list=[1,1,2,2,3] print(list) set1=s...

Python遍历numpy数组的实例

在用python进行图像处理时,有时需要遍历numpy数组,下面是遍历数组的方法: [rows, cols] = num.shape for i in range(rows - 1...

Python里字典的基本用法(包括嵌套字典)

Python里字典的基本用法(包括嵌套字典)

Python字典的基本用法 创建字典: myDict1 = { '薛之谦':'我叫薛之谦', '吴青峰':'我叫吴青峰', '李宇春':'我叫李宇春', '花花':'...

Tensorflow 查看变量的值方法

定义一个变量,直接输出会输出变量的属性,并不能输出变量值。那么怎么输出变量值呢?请看下面得意 import tensorflow as tf biases=tf.Variable(...