python实现机器学习之元线性回归

yipeiwu_com6年前Python基础

一、理论知识准备

1.确定假设函数

如:y=2x+7
其中,(x,y)是一组数据,设共有m个

2.误差cost

用平方误差代价函数

这里写图片描述

3.减小误差(用梯度下降)

这里写图片描述
这里写图片描述

二、程序实现步骤

1.初始化数据

x、y:样本
learning rate:学习率
循环次数loopNum:梯度下降次数

2.梯度下降

循环(循环loopNum次):
(1)算偏导(需要一个for循环遍历所有数据)
(2)利用梯度下降数学式子

三、程序代码

import numpy as np

def linearRegression(data_x,data_y,learningRate,loopNum):
  w,b=0,0

  #梯度下降
  for i in range(loopNum):
    w_derivative, b_derivative, cost = 0, 0, 0
    for j in range(len(data_x)):
      wxPlusb=w*data_x[j]+b
      w_derivative+=(wxPlusb-data_y[j])*data_x[j]
      b_derivative+=wxPlusb-data_y[j]
      cost+=(wxPlusb-data_y[j])*(wxPlusb-data_y[j])
    w_derivative=w_derivative/len(data_x)
    b_derivative=b_derivative/len(data_x)

    w = w - learningRate*w_derivative
    b = b - learningRate*b_derivative

    cost = cost/(2*len(data_x))
    if i%100==0:
      print(cost)
  print(w)
  print(b)

if __name__== "__main__": #_x:protected __x:private
  x=np.random.normal(0,10,100)
  noise=np.random.normal(0,0.05,100)
  y=2*x+7+noise
  linearRegression(x,y,0.01,5000)

四、输出

1.输出cost

这里写图片描述 

可以看到,一开始的误差是很大的,然后减小了

这里写图片描述 

最后几次输出的cost没有变化,可以将训练的次数减小一点

2.训练完的w和b

这里写图片描述 

和目标w=2,b=7很接近

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python二叉树的镜像转换实现方法示例

Python二叉树的镜像转换实现方法示例

本文实例讲述了Python二叉树的镜像转换实现方法。分享给大家供大家参考,具体如下: 问题描述 操作给定的二叉树,将其变换为源二叉树的镜像。 思路描述 1. 代码比文字更直观 2. 文...

Python进程间通信Queue实例解析

本文研究的主要是Python进程间通信Queue的相关实例,具体如下。 1.Queue使用方法: Queue.qsize():返回当前队列包含的消息数量; Queue.empt...

Python操作SQLite数据库的方法详解

本文实例讲述了Python操作SQLite数据库的方法。分享给大家供大家参考,具体如下: SQLite简单介绍 SQLite数据库是一款非常小巧的嵌入式开源数据库软件,也就是说没有独立的...

python的移位操作实现详解

因为要将js的一个签名算法移植到python上,遇到一些麻烦。 int无限宽度,不会溢出 算法中需要用到了32位int的溢出来参与运算,但是python的int是不会溢出的,达到界限后...

Python中基本的日期时间处理的学习教程

Python中基本的日期时间处理的学习教程

Python程序能用很多方式处理日期和时间。转换日期格式是一个常见的例行琐事。Python有一个 time 和 calendar 模组可以帮忙。 什么是Tick? 时间间隔是以秒为单位的...