python实现机器学习之元线性回归

yipeiwu_com6年前Python基础

一、理论知识准备

1.确定假设函数

如:y=2x+7
其中,(x,y)是一组数据,设共有m个

2.误差cost

用平方误差代价函数

这里写图片描述

3.减小误差(用梯度下降)

这里写图片描述
这里写图片描述

二、程序实现步骤

1.初始化数据

x、y:样本
learning rate:学习率
循环次数loopNum:梯度下降次数

2.梯度下降

循环(循环loopNum次):
(1)算偏导(需要一个for循环遍历所有数据)
(2)利用梯度下降数学式子

三、程序代码

import numpy as np

def linearRegression(data_x,data_y,learningRate,loopNum):
  w,b=0,0

  #梯度下降
  for i in range(loopNum):
    w_derivative, b_derivative, cost = 0, 0, 0
    for j in range(len(data_x)):
      wxPlusb=w*data_x[j]+b
      w_derivative+=(wxPlusb-data_y[j])*data_x[j]
      b_derivative+=wxPlusb-data_y[j]
      cost+=(wxPlusb-data_y[j])*(wxPlusb-data_y[j])
    w_derivative=w_derivative/len(data_x)
    b_derivative=b_derivative/len(data_x)

    w = w - learningRate*w_derivative
    b = b - learningRate*b_derivative

    cost = cost/(2*len(data_x))
    if i%100==0:
      print(cost)
  print(w)
  print(b)

if __name__== "__main__": #_x:protected __x:private
  x=np.random.normal(0,10,100)
  noise=np.random.normal(0,0.05,100)
  y=2*x+7+noise
  linearRegression(x,y,0.01,5000)

四、输出

1.输出cost

这里写图片描述 

可以看到,一开始的误差是很大的,然后减小了

这里写图片描述 

最后几次输出的cost没有变化,可以将训练的次数减小一点

2.训练完的w和b

这里写图片描述 

和目标w=2,b=7很接近

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于多进程中APScheduler重复运行的解决方法

问题 在一个python web应用中需要定时执行一些任务,所以用了APScheduler这个库。又因为是用flask这个web框架,所以用了flask-apscheduler这个插件(...

Python获取系统默认字符编码的方法

本文实例讲述了Python获取系统默认字符编码的方法。分享给大家供大家参考。具体分析如下: 在Python代码中,普通字符串的编码方式与程序源文件编码方式一致的,而很多IDE在默认情况下...

Python整数对象实现原理详解

Python整数对象实现原理详解

整数对象在Python内部用PyIntObject结构体表示: typedef struct { PyObject_HEAD long ob_ival; } PyIntObject;...

用Python设计一个经典小游戏

用Python设计一个经典小游戏

本文主要介绍如何用Python设计一个经典小游戏:猜大小。 在这个游戏中,将用到前面我介绍过的所有内容:变量的使用、参数传递、函数设计、条件控制和循环等,做个整体的总结和复习。 游戏规则...

python中redis查看剩余过期时间及用正则通配符批量删除key的方法

具体代码如下所示: # -*- coding: utf-8 -*- import redis import datetime ''' # 1. redis设置过期时间的两种方式 e...