python实现机器学习之元线性回归

yipeiwu_com5年前Python基础

一、理论知识准备

1.确定假设函数

如:y=2x+7
其中,(x,y)是一组数据,设共有m个

2.误差cost

用平方误差代价函数

这里写图片描述

3.减小误差(用梯度下降)

这里写图片描述
这里写图片描述

二、程序实现步骤

1.初始化数据

x、y:样本
learning rate:学习率
循环次数loopNum:梯度下降次数

2.梯度下降

循环(循环loopNum次):
(1)算偏导(需要一个for循环遍历所有数据)
(2)利用梯度下降数学式子

三、程序代码

import numpy as np

def linearRegression(data_x,data_y,learningRate,loopNum):
  w,b=0,0

  #梯度下降
  for i in range(loopNum):
    w_derivative, b_derivative, cost = 0, 0, 0
    for j in range(len(data_x)):
      wxPlusb=w*data_x[j]+b
      w_derivative+=(wxPlusb-data_y[j])*data_x[j]
      b_derivative+=wxPlusb-data_y[j]
      cost+=(wxPlusb-data_y[j])*(wxPlusb-data_y[j])
    w_derivative=w_derivative/len(data_x)
    b_derivative=b_derivative/len(data_x)

    w = w - learningRate*w_derivative
    b = b - learningRate*b_derivative

    cost = cost/(2*len(data_x))
    if i%100==0:
      print(cost)
  print(w)
  print(b)

if __name__== "__main__": #_x:protected __x:private
  x=np.random.normal(0,10,100)
  noise=np.random.normal(0,0.05,100)
  y=2*x+7+noise
  linearRegression(x,y,0.01,5000)

四、输出

1.输出cost

这里写图片描述 

可以看到,一开始的误差是很大的,然后减小了

这里写图片描述 

最后几次输出的cost没有变化,可以将训练的次数减小一点

2.训练完的w和b

这里写图片描述 

和目标w=2,b=7很接近

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python网络编程之TCP通信实例和socketserver框架使用例子

python网络编程之TCP通信实例和socketserver框架使用例子

1.TCP是一种面向连接的可靠地协议,在一方发送数据之前,必须在双方之间建立一个连接,建立的过程需要经过三次握手,通信完成后要拆除连接,需要经过四次握手,这是由TCP的半关闭造成的,一方...

PyTorch中topk函数的用法详解

PyTorch中topk函数的用法详解

听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index。 用法 torch.topk(input, k, dim=None, largest=...

python学习入门细节知识点

python入门细节 相除后的类型 type(2/2) float type(2//2) int 双斜杠是整除,出来的类型是int。单斜杠的出来的是float类型。 进制表示和转换...

Pycharm+Scrapy安装并且初始化项目的方法

Pycharm+Scrapy安装并且初始化项目的方法

前言 Scrapy是一个开源的网络爬虫框架,Python编写的。最初设计用于网页抓取,也可以用来提取数据使用API或作为一个通用的网络爬虫。是数据采集不可必备的利器。 安装 pip...

Python Web框架之Django框架cookie和session用法分析

本文实例讲述了Python Web框架之Django框架cookie和session用法。分享给大家供大家参考,具体如下: part 1 概念 在Django里面,cookie和sess...