python实现机器学习之多元线性回归

yipeiwu_com6年前Python基础

总体思路与一元线性回归思想一样,现在将数据以矩阵形式进行运算,更加方便。
一元线性回归实现代码
下面是多元线性回归用Python实现的代码:

import numpy as np

def linearRegression(data_X,data_Y,learningRate,loopNum):
 W = np.zeros(shape=[1, data_X.shape[1]])
 # W的shape取决于特征个数,而x的行是样本个数,x的列是特征值个数
 # 所需要的W的形式为 行=特征个数,列=1 这样的矩阵。但也可以用1行,再进行转置:W.T
 # X.shape[0]取X的行数,X.shape[1]取X的列数
 b = 0

 #梯度下降
 for i in range(loopNum):
  W_derivative = np.zeros(shape=[1, data_X.shape[1]])
  b_derivative, cost = 0, 0

  WXPlusb = np.dot(data_X, W.T) + b # W.T:W的转置
  W_derivative += np.dot((WXPlusb - data_Y).T, data_X) # np.dot:矩阵乘法
  b_derivative += np.dot(np.ones(shape=[1, data_X.shape[0]]), WXPlusb - data_Y)
  cost += (WXPlusb - data_Y)*(WXPlusb - data_Y)
  W_derivative = W_derivative / data_X.shape[0] # data_X.shape[0]:data_X矩阵的行数,即样本个数
  b_derivative = b_derivative / data_X.shape[0]


  W = W - learningRate*W_derivative
  b = b - learningRate*b_derivative

  cost = cost/(2*data_X.shape[0])
  if i % 100 == 0:
   print(cost)
 print(W)
 print(b)

if __name__== "__main__":
 X = np.random.normal(0, 10, 100)
 noise = np.random.normal(0, 0.05, 20)
 W = np.array([[3, 5, 8, 2, 1]]) #设5个特征值
 X = X.reshape(20, 5)  #reshape成20行5列
 noise = noise.reshape(20, 1)
 Y = np.dot(X, W.T)+6 + noise
 linearRegression(X, Y, 0.003, 5000)

特别需要注意的是要弄清:矩阵的形状

在梯度下降的时候,计算两个偏导值,这里面的矩阵形状变化需要注意。

梯度下降数学式子:

这里写图片描述 

以代码中为例,来分析一下梯度下降中的矩阵形状。
代码中设了5个特征。

这里写图片描述

WXPlusb = np.dot(data_X, W.T) + b

W是一个1*5矩阵,data_X是一个20*5矩阵
WXPlusb矩阵形状=20*5矩阵乘上5*1(W的转置)的矩阵=20*1矩阵

W_derivative += np.dot((WXPlusb - data_Y).T, data_X)

W偏导矩阵形状=1*20矩阵乘上 20*5矩阵=1*5矩阵

b_derivative += np.dot(np.ones(shape=[1, data_X.shape[0]]), WXPlusb - data_Y)

b是一个数,用1*20的全1矩阵乘上20*1矩阵=一个数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python装饰器

1. 定义 本质是函数,用来装饰其他函数,为其他函数添加附加功能 2. 原则 a. 不能修改被装饰函数的源代码 b. 不能修改被装饰的函数的调用方式 3. 实现装饰器知识储备 a. 函数...

Pytorch中Tensor与各种图像格式的相互转化详解

前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片。而且使用不同图像处理库读取出来的图片格...

python实现动态数组的示例代码

实现一个支持动态扩容的数组并完成其增删改查 #通过python实现动态数组 """ 数组特点: 占用一段连续的内存空间,支持随机(索引)访问,且时间复杂度为O(1) 添加...

pandas进行数据的交集与并集方式的数据合并方法

数据合并有多种方式,其中最常见的应该就是交集和并集的求取。之前通过分析总结过pandas数据merge功能默认的行为,其实默认下求取的就是两个数据的“交集”。 有如下数据定义: In...

Python通过future处理并发问题

Python通过future处理并发问题

future初识 通过下面脚本来对future进行一个初步了解: 例子1:普通通过循环的方式 import os import time import sys import re...