tensorflow实现简单逻辑回归

yipeiwu_com6年前Python基础

逻辑回归是机器学习中很简答的一个栗子,这篇文章就是要介绍如何使用tensorflow实现一个简单的逻辑回归算法。

逻辑回归可以看作只有一层网络的前向神经网络,并且参数连接的权重只是一个值,而非矩阵。公式为:y_predict=logistic(X*W+b),其中X为输入,W为输入与隐含层之间的权重,b为隐含层神经元的偏置,而logistic为激活函数,一般为sigmoid或者tanh, y_predict为最终预测结果。

逻辑回归是一种分类器模型,需要木便函数不断的优化参数,这里目标函数为y_predict与真实标签Y之间的L2距离,使用随机梯度下降算法来更新权重和偏置。 废话不多说,贴代码:

# -*- coding:utf-8 -*-
#功能: 使用tensorflow实现一个简单的逻辑回归
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
#创建占位符
X=tf.placeholder(tf.float32)
Y=tf.placeholder(tf.float32)
 
#创建变量
#tf.random_normal([1])返回一个符合正太分布的随机数
w=tf.Variable(tf.random_normal([1],name='weight'))
b=tf.Variable(tf.random_normal([1],name='bias'))
 
y_predict=tf.sigmoid(tf.add(tf.mul(X,w),b))
num_samples=400
cost=tf.reduce_sum(tf.pow(y_predict-Y,2.0))/num_samples
 
#学习率
lr=0.01
optimizer=tf.train.AdamOptimizer().minimize(cost)
 
#创建session 并初始化所有变量
num_epoch=500
cost_accum=[]
cost_prev=0
#np.linspace()创建agiel等差数组,元素个素为num_samples
xs=np.linspace(-5,5,num_samples)
ys=np.sin(xs)+np.random.normal(0,0.01,num_samples)
 
with tf.Session() as sess:
  #初始化所有变量
  sess.run(tf.initialize_all_variables())
  #开始训练
  for epoch in range(num_epoch):
    for x,y in zip(xs,ys):
      sess.run(optimizer,feed_dict={X:x,Y:y})
    train_cost=sess.run(cost,feed_dict={X:x,Y:y})
    cost_accum.append(train_cost)
    print "train_cost is:",str(train_cost)
 
    #当误差小于10-6时 终止训练
    if np.abs(cost_prev-train_cost)<1e-6:
      break
    #保存最终的误差
    cost_prev=train_cost
#画图 画出每一轮训练所有样本之后的误差
plt.plot(range(len(cost_accum)),cost_accum,'r')
plt.title('Logic Regression Cost Curve')
plt.xlabel('epoch')
plt.ylabel('cost')
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python numpy生成矩阵、串联矩阵代码分享

import numpy 生成numpy矩阵的几个相关函数: numpy.array() numpy.zeros() numpy.ones() numpy.eye() 串联生成num...

python logging重复记录日志问题的解决方法

日志相关概念 日志是一种可以追踪某些软件运行时所发生事件的方法。软件开发人员可以向他们的代码中调用日志记录相关的方法来表明发生了某些事情。一个事件可以用一个可包含可选变量数据的消息来描...

浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)

池化层定义在tensorflow/python/layers/pooling.py. 有最大值池化和均值池化。 1、tf.layers.max_pooling2d max_pooli...

Python pymongo模块常用操作分析

Python pymongo模块常用操作分析

本文实例讲述了Python pymongo模块常用操作。分享给大家供大家参考,具体如下: 环境:pymongo3.0.3,python3 以下是我整理的一些关于pymongo的操作,网上...

python3利用smtplib通过qq邮箱发送邮件方法示例

python3利用smtplib通过qq邮箱发送邮件方法示例

前言 本文主要给大家介绍了关于python3 smtplib通过qq邮箱发送邮件的相关内容, smtplib模块是smtp简单邮件传输协议客户端的实现,为了通用性,有时候发送邮件的时候要...