tensorflow实现简单逻辑回归

yipeiwu_com6年前Python基础

逻辑回归是机器学习中很简答的一个栗子,这篇文章就是要介绍如何使用tensorflow实现一个简单的逻辑回归算法。

逻辑回归可以看作只有一层网络的前向神经网络,并且参数连接的权重只是一个值,而非矩阵。公式为:y_predict=logistic(X*W+b),其中X为输入,W为输入与隐含层之间的权重,b为隐含层神经元的偏置,而logistic为激活函数,一般为sigmoid或者tanh, y_predict为最终预测结果。

逻辑回归是一种分类器模型,需要木便函数不断的优化参数,这里目标函数为y_predict与真实标签Y之间的L2距离,使用随机梯度下降算法来更新权重和偏置。 废话不多说,贴代码:

# -*- coding:utf-8 -*-
#功能: 使用tensorflow实现一个简单的逻辑回归
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
#创建占位符
X=tf.placeholder(tf.float32)
Y=tf.placeholder(tf.float32)
 
#创建变量
#tf.random_normal([1])返回一个符合正太分布的随机数
w=tf.Variable(tf.random_normal([1],name='weight'))
b=tf.Variable(tf.random_normal([1],name='bias'))
 
y_predict=tf.sigmoid(tf.add(tf.mul(X,w),b))
num_samples=400
cost=tf.reduce_sum(tf.pow(y_predict-Y,2.0))/num_samples
 
#学习率
lr=0.01
optimizer=tf.train.AdamOptimizer().minimize(cost)
 
#创建session 并初始化所有变量
num_epoch=500
cost_accum=[]
cost_prev=0
#np.linspace()创建agiel等差数组,元素个素为num_samples
xs=np.linspace(-5,5,num_samples)
ys=np.sin(xs)+np.random.normal(0,0.01,num_samples)
 
with tf.Session() as sess:
  #初始化所有变量
  sess.run(tf.initialize_all_variables())
  #开始训练
  for epoch in range(num_epoch):
    for x,y in zip(xs,ys):
      sess.run(optimizer,feed_dict={X:x,Y:y})
    train_cost=sess.run(cost,feed_dict={X:x,Y:y})
    cost_accum.append(train_cost)
    print "train_cost is:",str(train_cost)
 
    #当误差小于10-6时 终止训练
    if np.abs(cost_prev-train_cost)<1e-6:
      break
    #保存最终的误差
    cost_prev=train_cost
#画图 画出每一轮训练所有样本之后的误差
plt.plot(range(len(cost_accum)),cost_accum,'r')
plt.title('Logic Regression Cost Curve')
plt.xlabel('epoch')
plt.ylabel('cost')
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单了解Django ContentType内置组件

简单了解Django ContentType内置组件

一、引出问题 假如有这两张表,它们中的课程可能价格不一样、周期不一样、等等...不一样...,现在有一张价格策略表,怎么就用一张表报保存它们之间不同的数据呢? 可能你会这样: 确实是...

详解Python给照片换底色(蓝底换红底)

详解Python给照片换底色(蓝底换红底)

现在网上出现了很多在线换底色的网页版工具是这么做的呢?其实用Python就可以实现。 环境要求 Python3 numpy函数库 opencv库 安装 下载适应版本的numpy函数库...

Python使用scrapy采集数据过程中放回下载过大页面的方法

本文实例讲述了Python使用scrapy采集数据过程中放回下载过大页面的方法。分享给大家供大家参考。具体分析如下: 添加以下代码到settings.py,myproject为你的项目名...

Linux下通过python访问MySQL、Oracle、SQL Server数据库的方法

本文档主要描述了Linux下python数据库驱动的安装和配置,用来实现在Linux平台下通过python访问MySQL、Oracle、SQL Server数据库。 其中包括以下几个软件...

python使用pyqt写带界面工具的示例代码

python使用pyqt写带界面工具的示例代码

上篇介绍的使用python自带tkinter包,来写带界面的工具。 此篇介绍使用pyqt来开发测试工具。 tkinter的好处是python官方自带,上手容易(但手写控件复杂),布局和摆...