tensorflow实现简单逻辑回归
逻辑回归是机器学习中很简答的一个栗子,这篇文章就是要介绍如何使用tensorflow实现一个简单的逻辑回归算法。
逻辑回归可以看作只有一层网络的前向神经网络,并且参数连接的权重只是一个值,而非矩阵。公式为:y_predict=logistic(X*W+b),其中X为输入,W为输入与隐含层之间的权重,b为隐含层神经元的偏置,而logistic为激活函数,一般为sigmoid或者tanh, y_predict为最终预测结果。
逻辑回归是一种分类器模型,需要木便函数不断的优化参数,这里目标函数为y_predict与真实标签Y之间的L2距离,使用随机梯度下降算法来更新权重和偏置。 废话不多说,贴代码:
# -*- coding:utf-8 -*- #功能: 使用tensorflow实现一个简单的逻辑回归 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #创建占位符 X=tf.placeholder(tf.float32) Y=tf.placeholder(tf.float32) #创建变量 #tf.random_normal([1])返回一个符合正太分布的随机数 w=tf.Variable(tf.random_normal([1],name='weight')) b=tf.Variable(tf.random_normal([1],name='bias')) y_predict=tf.sigmoid(tf.add(tf.mul(X,w),b)) num_samples=400 cost=tf.reduce_sum(tf.pow(y_predict-Y,2.0))/num_samples #学习率 lr=0.01 optimizer=tf.train.AdamOptimizer().minimize(cost) #创建session 并初始化所有变量 num_epoch=500 cost_accum=[] cost_prev=0 #np.linspace()创建agiel等差数组,元素个素为num_samples xs=np.linspace(-5,5,num_samples) ys=np.sin(xs)+np.random.normal(0,0.01,num_samples) with tf.Session() as sess: #初始化所有变量 sess.run(tf.initialize_all_variables()) #开始训练 for epoch in range(num_epoch): for x,y in zip(xs,ys): sess.run(optimizer,feed_dict={X:x,Y:y}) train_cost=sess.run(cost,feed_dict={X:x,Y:y}) cost_accum.append(train_cost) print "train_cost is:",str(train_cost) #当误差小于10-6时 终止训练 if np.abs(cost_prev-train_cost)<1e-6: break #保存最终的误差 cost_prev=train_cost #画图 画出每一轮训练所有样本之后的误差 plt.plot(range(len(cost_accum)),cost_accum,'r') plt.title('Logic Regression Cost Curve') plt.xlabel('epoch') plt.ylabel('cost') plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。