使用tensorflow实现线性回归

yipeiwu_com5年前Python基础

本文实例为大家分享了tensorflow实现线性回归的具体代码,供大家参考,具体内容如下

一、随机生成1000个点,分布在y=0.1x+0.3直线周围,并画出来

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

num_points = 1000
vectors_set = []
for i in range(num_points):
  x1 = np.random.normal(0.0,0.55)
  //设置一定范围的浮动
  y1 = x1*0.1+0.3+np.random.normal(0.0,0.03)
  vectors_set.append([x1,y1])

x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

plt.scatter(x_data,y_data,c='r')
plt.show()

二、构造线性回归函数

#生成一维的w矩阵,取值为[-1,1]之间的随机数
w = tf.Variable(tf.random_uniform([1],-1.0,1.0),name='W')
#生成一维的b矩阵,初始值为0
b = tf.Variable(tf.zeros([1]),name='b')
y = w*x_data+b

#均方误差
loss = tf.reduce_mean(tf.square(y-y_data),name='loss')
#梯度下降
optimizer = tf.train.GradientDescentOptimizer(0.5)
#最小化loss
train = optimizer.minimize(loss,name='train')


sess=tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

#print("W",sess.run(w),"b=",sess.run(b),"loss=",sess.run(loss))
for step in range(20):
  sess.run(train)
  print("W=",sess.run(w),"b=",sess.run(b),"loss=",sess.run(loss))

//显示拟合后的直线
plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(w)*x_data+sess.run(b))
plt.show()

三、部分训练结果如下:

W= [ 0.10559751] b= [ 0.29925063] loss= 0.000887708
W= [ 0.10417549] b= [ 0.29926425] loss= 0.000884275
W= [ 0.10318361] b= [ 0.29927373] loss= 0.000882605
W= [ 0.10249177] b= [ 0.29928035] loss= 0.000881792
W= [ 0.10200921] b= [ 0.29928496] loss= 0.000881397
W= [ 0.10167261] b= [ 0.29928818] loss= 0.000881205
W= [ 0.10143784] b= [ 0.29929042] loss= 0.000881111
W= [ 0.10127408] b= [ 0.29929197] loss= 0.000881066

拟合后的直线如图所示:

结论:最终w趋近于0.1,b趋近于0.3,满足提前设定的数据分布

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Python中用split()方法分割字符串的使用介绍

split()方法返回的字符串中的所有单词的列表,使用str作为分隔符(如果在未指定的所有空格分割),可选择限当前分割为数量num。 语法 以下是split()方法的语法: str....

python实现输入的数据在地图上生成热力图效果

我就废话不多说了,直接贴代码,注意要先安装folium #-*-coding:utf8-*- #输入data生成热力图html,借助了leaflet,没网不能用 import o...

Python3编码问题 Unicode utf-8 bytes互转方法

为什么需要本文,因为在对接某些很老的接口的时候,需要传递过去的是16进制的hex字符串,并且要求对传的字符串做编码,这里就介绍了utf-8 Unicode bytes 等等。 #英文...

python的concat等多种用法详解

本文为大家分享了python的concat等多种用法,供大家参考,具体内容如下 1、numpy中的concatenate()函数: >>> a = np.array...

部署Python的框架下的web app的详细教程

部署Python的框架下的web app的详细教程

作为一个合格的开发者,在本地环境下完成开发还远远不够,我们需要把Web App部署到远程服务器上,这样,广大用户才能访问到网站。 很多做开发的同学把部署这件事情看成是运维同学的工作,这种...