tensorflow实现加载mnist数据集

yipeiwu_com5年前Python基础

mnist作为最基础的图片数据集,在以后的cnn,rnn任务中都会用到

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

#数据集存放地址,采用0-1编码
mnist = input_data.read_data_sets('F:/mnist/data/',one_hot = True)
print(mnist.train.num_examples)
print(mnist.test.num_examples)

trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels

#打印相关信息
print(type(trainimg))
print(trainimg.shape,)
print(trainlabel.shape,)
print(testimg.shape,)
print(testlabel.shape,)

nsample = 5
randidx = np.random.randint(trainimg.shape[0],size = nsample)

#输出几张数字的图
for i in randidx:
  curr_img = np.reshape(trainimg[i,:],(28,28))
  curr_label = np.argmax(trainlabel[i,:])
  plt.matshow(curr_img,cmap=plt.get_cmap('gray'))
  plt.title(""+str(i)+"th Training Data"+"label is"+str(curr_label))
  print(""+str(i)+"th Training Data"+"label is"+str(curr_label))
  plt.show()

程序运行结果如下:

Extracting F:/mnist/data/train-images-idx3-ubyte.gz
Extracting F:/mnist/data/train-labels-idx1-ubyte.gz
Extracting F:/mnist/data/t10k-images-idx3-ubyte.gz
Extracting F:/mnist/data/t10k-labels-idx1-ubyte.gz
55000
10000
<class 'numpy.ndarray'>
(55000, 784)
(55000, 10)
(10000, 784)
(10000, 10)
52636th 

输出的图片如下:

Training Datalabel is9

下面还有四张其他的类似图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用python实现汉字转拼音的2种方法

前言 在浏览博客时,偶然看到了用python将汉字转为拼音的第三方包,但是在实现的过程中发现一些参数已经更新,现在将两种方法记录一下。 xpinyin 在一些博客中看到,如果要转化成带...

opencv3/C++实现视频读取、视频写入

opencv3/C++实现视频读取、视频写入

视频读取 视频读取,主要利用VideoCapture类下的方法打开视频并获取视频中的帧,具体示例如下: #include<iostream> #include<op...

Python数据可视化:箱线图多种库画法

Python数据可视化:箱线图多种库画法

概念 箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和...

python类继承与子类实例初始化用法分析

本文实例讲述了python类继承与子类实例初始化用法。分享给大家供大家参考。具体分析如下: [ 先贴参考书籍原文(中文英文对照)] __init__方法介绍: If a base cla...

Python 3.7新功能之dataclass装饰器详解

前言 Python 3.7 将于今年夏天发布,Python 3.7 中将会有许多新东西: 各种字符集的改进 对注释的推迟评估 以及对dataclass的支持 最激动人心的...