python斐波那契数列的计算方法

yipeiwu_com6年前Python基础

题目:

计算斐波那契数列。具体什么是斐波那契数列,那就是0,1,1,2,3,5,8,13,21,34,55,89,144,233。

要求:

时间复杂度尽可能少

分析:

给出了三种方法:

方法1:递归的方法,在这里空间复杂度非常大。如果递归层数非常多的话,在python里需要调整解释器默认的递归深度。默认的递归深度是1000。我调整了半天代码也没有调整对,因为递归到1000已经让我的电脑的内存有些撑不住了。

方法2:将递归换成迭代,这样时间复杂度也在代码中标注出来了。

方法3:这种方法利用了求幂的简便性,采用了位运算。但是代价在于需要建立矩阵,进行矩阵运算。所以,当所求的数列的个数较小时,该方法还没有第二种简便。但是当取的索引值n超级大时,这种方法就非常方便了。时间复杂度在代码中标注出来了。

代码:

#!usr/bin/python2.7
# -*- coding=utf8 -*-
# @Time  : 18-1-3 下午2:53
# @Author : Cecil Charlie

import sys
import copy
sys.setrecursionlimit(1000) # 用来调整解释器默认最大递归深度


class Fibonacci(object):
  def __init__(self):
    pass

  def fibonacci1(self, n):
    '''
      原始的方法,时间复杂度为 o(2**n),因此代价较大
    :param n: 数列的第n个索引
    :return: 索引n对应的值
    '''
    if n < 1:
      return 0
    if n == 1 or n == 2:
      return 1
    return self.fibonacci1(n-1) + self.fibonacci1(n-2)

  @staticmethod
  def fibonacci2(n):
    """
      用循环替代递归,空间复杂度急剧降低,时间复杂度为o(n)
    """
    if n < 1:
      return 0
    if n == 1 or n == 2:
      return 1
    res = 1
    tmp1 = 0
    tmp2 = 1
    for _ in xrange(1, n):
      res = tmp1 + tmp2
      tmp1 = tmp2
      tmp2 = res
    return res

  def fibonacci3(self, n):
    """
      进一步减少迭代次数,采用矩阵求幂的方法,时间复杂度为o(log n),当然了,这种方法需要额外计算矩阵,计算矩阵的时间开销没有算在内.其中还运用到了位运算。
    """
    base = [[1, 1], [1, 0]]
    if n < 1:
      return 0
    if n == 1 or n == 2:
      return 1
    res = self.__matrix_power(base, n-2)
    return res[0][0] + res[1][0]

  def __matrix_power(self, mat, n):
    """
      求一个方阵的幂
    """
    if len(mat) != len(mat[0]):
      raise ValueError("The length of m and n is different.")
    if n < 0 or str(type(n)) != "<type 'int'>":
      raise ValueError("The power is unsuitable.")
    product, tmp = [], []
    for _ in xrange(len(mat)):
      tmp.append(0)
    for _ in xrange(len(mat)):
      product.append(copy.deepcopy(tmp))
    for _ in xrange(len(mat)):
      product[_][_] = 1
    tmp = mat
    while n > 0:
      if (n & 1) != 0: # 按位与的操作,在幂数的二进制位为1时,乘到最终结果上,否则自乘
        product = self.__multiply_matrix(product, tmp)
      tmp = self.__multiply_matrix(tmp, tmp)
      n >>= 1
    return product

  @staticmethod
  def __multiply_matrix(mat1, mat2):
    """
      矩阵计算乘积
    :param m: 矩阵1,二维列表
    :param n: 矩阵2
    :return: 乘积
    """
    if len(mat1[0]) != len(mat2):
      raise ValueError("Can not compute the product of mat1 and mat2.")
    product, tmp = [], []
    for _ in xrange(len(mat2[0])):
      tmp.append(0)
    for _ in xrange(len(mat1)):
      product.append(copy.deepcopy(tmp))
    for i in xrange(0, len(mat1)):
      for j in xrange(0, len(mat2[0])):
        for k in xrange(0, len(mat1[0])):
          if mat1[i][k] != 0 and mat2[k][j] != 0:
            product[i][j] += mat1[i][k] * mat2[k][j]
    return product


f = Fibonacci()
print f.fibonacci1(23)
print f.fibonacci2(23)
mat1 = [[2,4,5],[1,0,2],[4,6,9]]
mat2 = [[2,9],[1,0],[5,7]]
print f.fibonacci3(23)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 二叉树的层序建立与三种遍历实现详解

Python 二叉树的层序建立与三种遍历实现详解

前言 二叉树(Binary Tree)时数据结构中一个非常重要的结构,其具有。。。。(此处省略好多字)。。。。等的优良特点。 之前在刷LeetCode的时候把有关树的题目全部跳过了,(O...

实例讲解Python设计模式编程之工厂方法模式的使用

实例讲解Python设计模式编程之工厂方法模式的使用

工厂方法模式是简单工厂模式的进一步抽象和推广,它不仅保持了简单工厂模式能够向客户隐藏类的实例化过程这一优点,而且还通过多态性克服了工厂类过于复杂且不易于扩展的缺点。在工厂方法模式中,处于...

Python 多线程搜索txt文件的内容,并写入搜到的内容(Lock)方法

废话不多说,直接上代码吧! import threading import os class Find(threading.Thread): #搜索数据的线程类 def __i...

pandas or sql计算前后两行数据间的增值方法

遇到这样一个需求,有一张表,要给这张表新增一个字段delta,delta的值等于每行的c1列的值减去上一行c1列的值。 我的解决方案,可以通过python的pandas的diff来实现,...

Python3 中作为一等对象的函数解析

Python3 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。 函数能提高应用的模块性,和代码的重复利用率。你已经知道Python提供了许多内建函数,比如pr...