使用numba对Python运算加速的方法

yipeiwu_com6年前Python基础

有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~

(numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库)

from numba import jit

@jit
def t(count=1000):
 total = 0
 for i in range(int(count)):
  total += i
 return total

测试效果:

(关于__wrapped__ 见我的博文: 浅谈解除装饰器作用(python3新增)

In [17]: %timeit -n 1 t.__wrapped__()
1 loop, best of 3: 52.9 µs per loop

In [18]: %timeit -n 1 t()
The slowest run took 13.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

可以看到使用jit 加速后,即使设置测试一次,实际上还是取了三次的最优值,如果取最坏值(因为最优值可能是缓存下来的),则耗时为395ns * 13 大概是5us 还是比不使用的52.9us 快上大概10倍,

增大计算量可以看到使用numba加速后的效果提升更加明显,

In [19]: %timeit -n 10 t.__wrapped__(1e6)
10 loops, best of 3: 76.2 ms per loop

In [20]: %timeit -n 1 t(1e6)
The slowest run took 8.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 790 ns per loop

如果减少计算量,可以看到当降到明显小值时,使用加速后的效果(以最差计)与不加速效果差距不大,因此如果涉及到较大计算量不妨使用jit 加速下,何况使用起来这么简便。

%timeit -n 1 t(10)
1 loop, best of 3: 0 ns per loop

%timeit -n 100 t.__wrapped__(10)
100 loops, best of 3: 1.79 µs per loop

%timeit -n 1 t(1)
The slowest run took 17.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

%timeit -n 100 t.__wrapped__(1)
100 loops, best of 3: 671 ns per loop

以上这篇使用numba对Python运算加速的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python设计模式之享元模式原理与用法实例分析

Python设计模式之享元模式原理与用法实例分析

本文实例讲述了Python设计模式之享元模式原理与用法。分享给大家供大家参考,具体如下: 享元模式(Flyweight Pattern):运用共享技术有效地支持大量细粒度的对象. 下面是...

Python 最强编辑器详细使用指南(PyCharm )

Python 最强编辑器详细使用指南(PyCharm )

作者:Jahongir Rahmonov 机器之心编译 参与:魔王 PyCharm 是一种 Python IDE,可以帮助程序员节约时间,提高生产效率。那么具体如何使用呢?本文从 PyC...

Django添加KindEditor富文本编辑器的使用

KindEditor简介: KindEditor是一套开源的在线HTML编辑器,主要用于让用户在网站上获得所见即所得编辑效果,开发人员可以用KindEditor 把传统的多行文本输入框...

解决Python对齐文本字符串问题

问题 我们需要以某种对齐方式将文本做格式化处理。 解决方案 对于基本的字符串对齐要求,可以使用字符串的ljust()、rjust()和center()方法。示例如下: >>...

利用标准库fractions模块让Python支持分数类型的方法详解

前言 你可能不需要经常处理分数,但当你需要时,Python的Fraction类会给你很大的帮助。本文将给大家详细介绍关于利用标准库fractions模块让Python支持分数类型的相关内...