使用numba对Python运算加速的方法

yipeiwu_com6年前Python基础

有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~

(numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库)

from numba import jit

@jit
def t(count=1000):
 total = 0
 for i in range(int(count)):
  total += i
 return total

测试效果:

(关于__wrapped__ 见我的博文: 浅谈解除装饰器作用(python3新增)

In [17]: %timeit -n 1 t.__wrapped__()
1 loop, best of 3: 52.9 µs per loop

In [18]: %timeit -n 1 t()
The slowest run took 13.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

可以看到使用jit 加速后,即使设置测试一次,实际上还是取了三次的最优值,如果取最坏值(因为最优值可能是缓存下来的),则耗时为395ns * 13 大概是5us 还是比不使用的52.9us 快上大概10倍,

增大计算量可以看到使用numba加速后的效果提升更加明显,

In [19]: %timeit -n 10 t.__wrapped__(1e6)
10 loops, best of 3: 76.2 ms per loop

In [20]: %timeit -n 1 t(1e6)
The slowest run took 8.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 790 ns per loop

如果减少计算量,可以看到当降到明显小值时,使用加速后的效果(以最差计)与不加速效果差距不大,因此如果涉及到较大计算量不妨使用jit 加速下,何况使用起来这么简便。

%timeit -n 1 t(10)
1 loop, best of 3: 0 ns per loop

%timeit -n 100 t.__wrapped__(10)
100 loops, best of 3: 1.79 µs per loop

%timeit -n 1 t(1)
The slowest run took 17.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

%timeit -n 100 t.__wrapped__(1)
100 loops, best of 3: 671 ns per loop

以上这篇使用numba对Python运算加速的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python如何实现不用装饰器实现登陆器小程序

这篇文章主要介绍了python如何实现不用装饰器实现登陆器小程序,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 下面代码演示了不使用装...

Python在Matplotlib图中显示中文字体的操作方法

1.    说明 本篇主要针对在Ubuntu系统中,matplotlib显示不了中文的问题,尤其是在无法安装系统字体的情况下,解决Python绘图时中文显示...

将Django使用的数据库从MySQL迁移到PostgreSQL的教程

我们已对 Django1.6 app完成了数据库从mysql到PostgreSQL的迁移,如果你的环境很干净,这个过程就会很简单,只要允许syncdb 或者 migrate创建表,tru...

跟老齐学Python之眼花缭乱的运算符

在计算机高级中语言,运算符是比较多样化的。其实,也都源于我们日常的需要。 算术运算符 前面已经讲过了四则运算,其中涉及到一些运算符:加减乘除,对应的符号分别是:+ - * /,此外,还有...

Python统计文件中去重后uuid个数的方法

本文实例讲述了Python统计文件中去重后uuid个数的方法。分享给大家供大家参考。具体如下: 利用正则表达式按行获取日志文件中的的uuid,并且统计这些uuid的去重个数(去重利用se...