使用numba对Python运算加速的方法

yipeiwu_com6年前Python基础

有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~

(numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库)

from numba import jit

@jit
def t(count=1000):
 total = 0
 for i in range(int(count)):
  total += i
 return total

测试效果:

(关于__wrapped__ 见我的博文: 浅谈解除装饰器作用(python3新增)

In [17]: %timeit -n 1 t.__wrapped__()
1 loop, best of 3: 52.9 µs per loop

In [18]: %timeit -n 1 t()
The slowest run took 13.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

可以看到使用jit 加速后,即使设置测试一次,实际上还是取了三次的最优值,如果取最坏值(因为最优值可能是缓存下来的),则耗时为395ns * 13 大概是5us 还是比不使用的52.9us 快上大概10倍,

增大计算量可以看到使用numba加速后的效果提升更加明显,

In [19]: %timeit -n 10 t.__wrapped__(1e6)
10 loops, best of 3: 76.2 ms per loop

In [20]: %timeit -n 1 t(1e6)
The slowest run took 8.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 790 ns per loop

如果减少计算量,可以看到当降到明显小值时,使用加速后的效果(以最差计)与不加速效果差距不大,因此如果涉及到较大计算量不妨使用jit 加速下,何况使用起来这么简便。

%timeit -n 1 t(10)
1 loop, best of 3: 0 ns per loop

%timeit -n 100 t.__wrapped__(10)
100 loops, best of 3: 1.79 µs per loop

%timeit -n 1 t(1)
The slowest run took 17.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

%timeit -n 100 t.__wrapped__(1)
100 loops, best of 3: 671 ns per loop

以上这篇使用numba对Python运算加速的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django自带serializers序列化返回指定字段的方法

django orm 有个defer方法,指定模型排除的字段。 如下返回的Queryset, 排除‘username', 'id'。 users=models.UserInfo.ob...

使用python的pandas库读取csv文件保存至mysql数据库

第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\...

python获取url的返回信息方法

如下所示: #!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import urllib im...

Linux下python3.6.1环境配置教程

Linux下python3.6.1环境配置教程

linux系统环境自带python2.6,但有时我们项目使用的版本可能是3.x以上等等,此时我们需要在linux中再安装项目所需的python版本,此时就涉及多版本共存问题了,很多同学在...

Python中解析JSON并同时进行自定义编码处理实例

在对文件内容或字符串进行JSON反序列化(deserialize)时,由于原始内容编码问题,可能需要对反序列化后的内容进行编码处理(如将unicode对象转换为str)。 在Python...