使用numba对Python运算加速的方法

yipeiwu_com6年前Python基础

有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~

(numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库)

from numba import jit

@jit
def t(count=1000):
 total = 0
 for i in range(int(count)):
  total += i
 return total

测试效果:

(关于__wrapped__ 见我的博文: 浅谈解除装饰器作用(python3新增)

In [17]: %timeit -n 1 t.__wrapped__()
1 loop, best of 3: 52.9 µs per loop

In [18]: %timeit -n 1 t()
The slowest run took 13.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

可以看到使用jit 加速后,即使设置测试一次,实际上还是取了三次的最优值,如果取最坏值(因为最优值可能是缓存下来的),则耗时为395ns * 13 大概是5us 还是比不使用的52.9us 快上大概10倍,

增大计算量可以看到使用numba加速后的效果提升更加明显,

In [19]: %timeit -n 10 t.__wrapped__(1e6)
10 loops, best of 3: 76.2 ms per loop

In [20]: %timeit -n 1 t(1e6)
The slowest run took 8.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 790 ns per loop

如果减少计算量,可以看到当降到明显小值时,使用加速后的效果(以最差计)与不加速效果差距不大,因此如果涉及到较大计算量不妨使用jit 加速下,何况使用起来这么简便。

%timeit -n 1 t(10)
1 loop, best of 3: 0 ns per loop

%timeit -n 100 t.__wrapped__(10)
100 loops, best of 3: 1.79 µs per loop

%timeit -n 1 t(1)
The slowest run took 17.00 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

%timeit -n 100 t.__wrapped__(1)
100 loops, best of 3: 671 ns per loop

以上这篇使用numba对Python运算加速的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pandas实现选取特定索引的行

如下所示: >>> import numpy as np >>> import pandas as pd >>> index=n...

django写用户登录判定并跳转制定页面的实例

1. 首先看要设置登陆的界面 book/view.py @user_util.my_login #相当于 select_all=my_login(select_all) def se...

python实现栅栏加解密 支持密钥加密

python实现栅栏加解密 支持密钥加密

栅栏加解密是对较短字符串的一种处理方式,给定行数Row,根据字符串长度计算出列数Column,构成一个方阵。 加密过程:就是按列依次从上到下对明文进行排列,然后按照密钥对各行进行打乱,最...

Python利用公共键如何对字典列表进行排序详解

前言 在程序中使用字典进行数据信息统计时,由于字典是无序的所以打印字典时内容也是无序的。因此,为了使统计得到的结果更方便查看需要进行排序。Python中字典的排序分为按“键”排序和按“值...

Python基于回溯法子集树模板实现图的遍历功能示例

Python基于回溯法子集树模板实现图的遍历功能示例

本文实例讲述了Python基于回溯法子集树模板实现图的遍历功能。分享给大家供大家参考,具体如下: 问题 一个图: A --> B A --> C B --> C B -...