对pandas中iloc,loc取数据差别及按条件取值的方法详解

yipeiwu_com6年前Python基础

Dataframe使用loc取某几行几列的数据:

print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']])

结果如下,取了index为0到4的五行四列数据。

  item_price_level item_sales_level item_collected_level item_pv_level
0     3     3      4    14
1     3     3      4    14
2     3     3      4    14
3     3     3      4    14
4     3     3      4    14

而使用iloc,如下所示:

print(df.iloc[0:4,6:9])

结果如下,取得是index为0到3四行,以及第6到8列(从0列开始)3列数据。

  item_price_level item_sales_level item_collected_level
0     3     3      4
1     3     3      4
2     3     3      4
3     3     3      4

另外loc可以按条件取数据:

print(df.loc[df.item_price_level==0,:])
print(df.loc[df[item_price_level]==0,:])

上面两条语句效果是一样的,都是取item_price_level为0的所有数据。可以把冒号改成几列列名,只取满足条件的某几列数据:

print(df.loc[df['item_price_level']==0,['item_price_level','item_sales_level']])

结果前两行如下:

   item_price_level item_sales_level
129141     0    10
129142     0    10

条件为多个时 (同时满足两个条件如下):

print(df.loc[(item_price_level==0) & (item_sales_level==3),:])
 

以上这篇对pandas中iloc,loc取数据差别及按条件取值的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

跟老齐学Python之正规地说一句话

小孩子刚刚开始学说话的时候,常常是一个字一个字地开始学,比如学说“饺子”,对他/她来讲,似乎有点难度,大人也聪明,于是就简化了,用“饺饺”来代替,其实就是让孩子学会一个字就能表达。当然,...

Python科学计算之NumPy入门教程

前言 NumPy是Python用于处理大型矩阵的一个速度极快的数学库。它允许你在Python中做向量和矩阵的运算,而且很多底层的函数都是用C写的,你将获得在普通Python中无法达到的...

Python2.7+pytesser实现简单验证码的识别方法

本文实例讲述了Python2.7+pytesser实现简单验证码的识别方法。分享给大家供大家参考,具体如下: 首先,安装Python2.7版本 然后,安装PIL工具,下载的地址是:htt...

使用python绘制二元函数图像的实例

废话少说,直接上代码: #coding:utf-8 import numpy as np import matplotlib.pyplot as plt from mpl_toolk...

python最小生成树kruskal与prim算法详解

python最小生成树kruskal与prim算法详解

kruskal算法基本思路:先对边按权重从小到大排序,先选取权重最小的一条边,如果该边的两个节点均为不同的分量,则加入到最小生成树,否则计算下一条边,直到遍历完所有的边。 prim算法基...