解决pandas.DataFrame.fillna 填充Nan失败的问题

yipeiwu_com6年前Python基础

如果单独是

>>> df.fillna(0)
>>> print(df) # 可以看到未发生改变
 
 
>>> print(df.fillna(0)) # 如果直接打印是可以看到填充进去了
>>> print(df) # 但是再次打印就会发现没有了,还是Nan

将其Nan全部填充为0,这时再打印的话会发现根本未填充,这是因为没有加上参数inplace参数。

一定要将inplace = True加入参数,这样才能让源数据发生改变并保存。

>>> df.fillna(0, inplace = True)
>>> print(df) #可以看到发生改变
 

以上这篇解决pandas.DataFrame.fillna 填充Nan失败的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python设置tmpfs来加速项目的教程

 对我当前工程进行全部测试需要花费不少时间。既然有 26 GB 空闲内存,为何不让其发挥余热呢? tmpfs 可以通过把文件系统保存在大内存中来加速测试的执行效率。 但...

Python进阶篇之字典操作总结

一、与字典值有关的计算 问题 想对字典的值进行相关计算,例如找出字典里对应值最大(最小)的项。 解决方案一: 假设要从字典 {'a':3, 'b':2, 'c':6} 中找出值最小...

python linecache 处理固定格式文本数据的方法

小程序大功能 对一批报文要处理要处理里面的得分,发现python linecache ,特记录如下。 #!/usr/bin/env python # -*- coding: utf-...

基于python plotly交互式图表大全

基于python plotly交互式图表大全

plotly可以制作交互式图表,直接上代码: import plotly.offline as py from plotly.graph_objs import Scatter, L...

Python解惑之True和False详解

Python解惑之True和False详解

前言 众所周知在Python 中常用的数据类型bool(布尔)类型的实例对象(值)就两个,真和假,分别用True和False表示。在if 条件判断和while 语句中经常用到,不过在Py...