pandas.DataFrame删除/选取含有特定数值的行或列实例

yipeiwu_com5年前Python基础

1.删除/选取某列含有特殊数值的行

import pandas as pd
import numpy as np
 
a=np.array([[1,2,3],[4,5,6],[7,8,9]])
df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC'))
print(df1)
df2=df1.copy()
 
#删除/选取某列含有特定数值的行
#df1=df1[df1['A'].isin([1])]
#df1[df1['A'].isin([1])] 选取df1中A列包含数字1的行
 
df1=df1[~df1['A'].isin([1])]
#通过~取反,选取不包含数字1的行
print(df1)

运行结果:

pandas.DataFrame删除/选取含有特定数值的行或列

2.删除/选取某行含有特殊数值的列

#删除/选取某行含有特定数值的列
cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]==3]
#利用enumerate对row0进行遍历,将含有数字3的列放入cols中
print(cols)
 
#df2=df2[cols]  选取含有特定数值的列
df2=df2.drop(cols,axis=1) #利用drop方法将含有特定数值的列删除
print(df2)

运行结果:

pandas.DataFrame删除/选取含有特定数值的行或列

3.删除含有空值的行或列

实现思路:利用pandas.DateFrame.fillna对空值赋予特定值,再利用上文介绍的方法找到这些含有特定值的行或列去除即可。

import pandas as pd
import numpy as np
 
df1 = pd.DataFrame(
  [
    [np.nan, 2, np.nan, 0],
    [3, 4, np.nan, 1],
    [np.nan, np.nan, np.nan, 5],
    [np.nan, 3, np.nan, 4]
  ],columns=list('ABCD'))
print(df1)
df2=df1.copy()
 
df1['A']=df1['A'].fillna('null') #将df中A列所有空值赋值为'null'
print(df1)
df1=df1[~df1['A'].isin(['null'])]
print(df1)
 
#删除某行空值所在列
 
df2[0:1]=df2[0:1].fillna('null')
print(df2)
cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]=='null']
print(cols)
df2=df2.drop(cols,axis=1)
print(df2)

运行结果:

pandas.DataFrame删除/选取含有特定数值的行或列

以上这篇pandas.DataFrame删除/选取含有特定数值的行或列实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python傅里叶变换FFT绘制频谱图

本文实例为大家分享了python傅里叶变换FFT绘制频谱图的具体代码,供大家参考,具体内容如下 频谱图的横轴表示的是 频率, 纵轴表示的是振幅 #coding=gbk...

利用numpy和pandas处理csv文件中的时间方法

利用numpy和pandas处理csv文件中的时间方法

环境:numpy,pandas,python3 在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,...

Python使用线程来接收串口数据的示例

如下所示: #!/usr/bin/env python import serial import time import thread class MSerialPort: m...

python 用正则表达式筛选文本信息的实例

本文主要介绍如何对多个文本进行读取,并采用正则表达式对其中的信息进行筛选,将筛选出来的信息存写到一个新文本。 文本基础操作 打开文件:open(‘文件名',‘打开方式')>>...

深入解析Python中的集合类型操作符

(1)标准类型操作符(所有的集合类型) 成员关系 (in, not in)         就序列而言,Python...