python训练数据时打乱训练数据与标签的两种方法小结

yipeiwu_com5年前Python基础

如下所示:

<code class="language-python">import numpy as np 
 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])
 
print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
data_num, _= data.shape #得到样本数 
index = np.arange(data_num) # 生成下标 
np.random.shuffle(index) 
print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
print '数据:',data[index] 
print '标签:',y[index]

print '-------第2种方法:直接的打乱数据,利用随机数种子,好处:每次打乱的顺序是固定的----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])

print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
np.random.seed(116)
np.random.shuffle(data) 
np.random.seed(116)
np.random.shuffle(y) 
print '数据:',data 
print '标签:', y</code>

以上这篇python训练数据时打乱训练数据与标签的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解析Python中的生成器及其与迭代器的差异

生成器 生成器是一种迭代器,是一种特殊的函数,使用yield操作将函数构造成迭代器。普通的函数有一个入口,有一个返回值;当函数被调用时,从入口开始执行,结束时返回相应的返回值。生成器定义...

python自动识别文本编码格式代码

我就废话不多说了,直接上代码吧! #!/usr/bin/python3 # -*- coding: utf-8 -*- import codecs import os import...

解析Python中的二进制位运算符

解析Python中的二进制位运算符

下表列出了所有的Python语言的支持位运算符。假设变量a持有60和变量b持有13,则: 示例: 试试下面的例子就明白了所有的Python编程语言提供了位运算符: #!/usr/...

使用python Fabric动态修改远程机器hosts的方法

一、关于fabric fabric是一个很强大的包,可以将多机操作、部署的命令固化到脚本里面, 详情可参考文档 http://fabric-chs.readthedocs.io/zh_C...

Python使用ffmpy将amr格式的音频转化为mp3格式的例子

最近做了一个项目,将从微信下载的音频文件(默认为.amr格式)转化为mp3格式(否则前端播放将会遇到困难)上传到云端。经过一番研究,最终决定采用Python的ffmpy包。 首先是ffm...