python训练数据时打乱训练数据与标签的两种方法小结

yipeiwu_com6年前Python基础

如下所示:

<code class="language-python">import numpy as np 
 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])
 
print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
data_num, _= data.shape #得到样本数 
index = np.arange(data_num) # 生成下标 
np.random.shuffle(index) 
print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
print '数据:',data[index] 
print '标签:',y[index]

print '-------第2种方法:直接的打乱数据,利用随机数种子,好处:每次打乱的顺序是固定的----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])

print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
np.random.seed(116)
np.random.shuffle(data) 
np.random.seed(116)
np.random.shuffle(y) 
print '数据:',data 
print '标签:', y</code>

以上这篇python训练数据时打乱训练数据与标签的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对Python 2.7 pandas 中的read_excel详解

导入pandas模块: import pandas as pd 使用import读入pandas模块,并且为了方便使用其缩写pd指代。 读入待处理的excel文件: df =...

Python中的默认参数实例分析

本文研究的主要是Python中的默认参数的相关内容,具体如下。 熟悉C++语言的可以知道,C++语言中的默认参数是写在函数声明中的,为语法糖,与函数的调用无关,是在函数调用的时候由编译器...

python3使用flask编写注册post接口的方法

使用python3的Flask库写了一个接口,封装了很多东西,仅供参考即可! 代码如下: #!/usr/bin/python3 # -*- coding: utf-8 -*- im...

tensorflow 中对数组元素的操作方法

tensorflow 中对数组元素的操作方法

tensorflow中对tensor对象进行像numpy数组一样便捷的操作是不可能的, 至少对1.2以及之前的版本而言。 从issue上看到,有不少人希望tensorflow能及早实现这...

Centos 升级到python3后pip 无法使用的解决方法

一. 问题 [root@localhost local]# pip -bash: pip: command not found pip无法使用. 二. 系统环境 Centos...