python微元法计算函数曲线长度的方法

yipeiwu_com5年前Python基础

计算曲线长度,根据线积分公式:

python微元法计算函数曲线长度,令积分函数 f(x,y,z) 为1,即计算曲线的长度,将其微元化:

python微元法计算函数曲线长度

其中

python微元法计算函数曲线长度

根据此时便可在python编程实现,给出4个例子,代码中已有详细注释,不再赘述

'''
计算曲线长度,根据线积分公式:
\int_A^Bf(x,y,z)dl,令积分函数为1,即计算曲线的长度
'''
import numpy as np
from mpl_toolkits.mplot3d import *
import matplotlib.pyplot as plt

## 求二维圆周长,半径为1,采用参数形式
def circle_2d(dt=0.001,plot=True):
 dt = dt # 变化率
 t = np.arange(0,2*np.pi, dt)
 x = np.cos(t)
 y = np.sin(t)

 # print(len(t))
 area_list = [] # 存储每一微小步长的曲线长度

 for i in range(1,len(t)):
  # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始
  dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) 
  # 将计算结果存储起来
  area_list.append(dl_i)

 area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度

 print("二维圆周长:{:.4f}".format(area))
 if plot:
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.plot(x,y)
  plt.title("circle")
  plt.show()


## 二维空间曲线,采用参数形式
def curve_param_2d(dt=0.0001,plot=True):
 dt = dt # 变化率
 t = np.arange(0,2*np.pi, dt)
 x = t*np.cos(t)
 y = t*np.sin(t)

 # print(len(t))
 area_list = [] # 存储每一微小步长的曲线长度

 # 下面的方式是循环实现
 # for i in range(1,len(t)):
 #  # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始
 #  dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) 
 #  # 将计算结果存储起来
 #  area_list.append(dl_i)

 # 更加pythonic的写法
 area_list = [np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) for i in range(1,len(t))]

 area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度

 print("二维参数曲线长度:{:.4f}".format(area))

 if plot:

  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.plot(x,y)
  plt.title("2-D Parameter Curve")
  plt.show()

## 二维空间曲线
def curve_2d(dt=0.0001,plot=True):
 dt = dt # 变化率
 t = np.arange(-6,10, dt)
 x = t
 y = x**3/8 - 4*x + np.sin(3*x)

 # print(len(t))
 area_list = [] # 存储每一微小步长的曲线长度

 # for i in range(1,len(t)):
 #  # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始
 #  dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) 
 #  # 将计算结果存储起来
 #  area_list.append(dl_i)

 area_list = [np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) for i in range(1,len(t))]

 area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度

 print("二维曲线长度:{:.4f}".format(area))

 if plot:
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.plot(x,y)
  plt.title("2-D Curve")
  plt.show()

## 三维空间曲线,采用参数形式
def curve_3d(dt=0.001,plot=True):
 dt = dt # 变化率
 t = np.arange(0,2*np.pi, dt)
 x = t*np.cos(t)
 y = t*np.sin(t)
 z = 2*t

 # print(len(t))
 area_list = [] # 存储每一微小步长的曲线长度

 for i in range(1,len(t)):
  # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始
  dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 + (z[i]-z[i-1])**2 ) 
  # 将计算结果存储起来
  area_list.append(dl_i)

 area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度

 print("三维空间曲线长度:{:.4f}".format(area))

 if plot:
  fig = plt.figure()
  ax = fig.add_subplot(111,projection='3d')
  ax.plot(x,y,z)
  plt.title("3-D Curve")
  plt.show()

if __name__ == '__main__':

 circle_2d(plot=True)
 curve_param_2d(plot=True)
 curve_2d(plot=True)
 curve_3d(plot=True)

得到结果:

二维圆周长:6.2830
二维参数曲线长度:21.2558
二维曲线长度:128.2037
三维空间曲线长度:25.3421

python微元法计算函数曲线长度

python微元法计算函数曲线长度

python微元法计算函数曲线长度

python微元法计算函数曲线长度

以上这篇python微元法计算函数曲线长度的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中进程和线程的区别详解

Num01–>线程 线程是操作系统中能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。 一个线程指的是进程中一个单一顺序的控制流。 一个进程中可以并发多条线程...

Pycharm无法显示动态图片的解决方法

Pycharm无法显示动态图片的解决方法

最近在学习的时候遇到了一个问题始终没有解决,这个博客写的也不是完全解决了这个问题。指示换了一种可行的思路而已。 在运行一些显示动态的图片时,Pycharm只显示一帧,也没有找到什么解决...

对PyQt5中的菜单栏和工具栏实例详解

对PyQt5中的菜单栏和工具栏实例详解

在这一部分,我们学习创建状态栏,菜单栏和工具栏。一个菜单是位于菜单栏的一组命令。一个工具栏有一些按钮,这些按钮在应用程序中拥有一些常用命令。状态栏显示状态信息,通常位于应用窗口下方。 Q...

Django视图和URL配置详解

Django视图和URL配置详解

本文研究的主要是Django视图和URL配置,具体介绍如下。 一、视图 1.在mysite文件夹下,创建views.py文件(文件名没有特别的要求); from django.ht...

python监控网卡流量并使用graphite绘图的示例

复制代码 代码如下:#!/usr/bin/env pythonimport sys,timefrom socket import socketdef read_interface(in_...