对pandas的行列名更改与数据选择详解

yipeiwu_com5年前Python基础

记录一些pandas选择数据的内容,此前首先说行列名的获取和更改,以方便获取数据。此文作为学习巩固。

这篇博的内容顺序大概就是: 行列名的获取 —> 行列名的更改 —> 数据选择

一、pandas的行列名获取和更改

1. 获取: df.index() df.columns()

首先,举个例子,做一个DataFrame如下:

>>>import pandas as pd
>>>import numpy as np
>>>data = pd.DataFrame({'a':[1,2,3],'b':[4,5,6],'c':[7,8,9]})
>>>data

pandas 行列名更改与数据选择

设置了列索引为 abc,行索引是自动生成的,也可以设置

>>>data.index = ['A','B','C']
>>>data

pandas 行列名更改与数据选择

以下的做法都以这个 data 作为数据举例

接下来就可以获取索引了,index-行索引,columns-列索引

>>>data.index

pandas 行列名更改与数据选择

>>>data.columns

pandas 行列名更改与数据选择

2. 修改,看到有很多方法,这里推荐一种比较灵活好用的方法

 df.rename(index={ }, columns={ }, inplace=True)
>>>data.rename(index={'A':'D', 'B':'E', 'C':'F'}, columns={'a':'d', 'b':'e', 'c':'f'}, inplace = True)
>>>data

pandas 行列名更改与数据选择

说明3点:

1. index和columns无关,可以分别指定,也就是说,可以只修改行索引,那么rename()中只写index

2. 索引可以任意挑选,如此处,index={'A':'D', 'C':'F'} 则只改A和C,columns同样

3. inplace=True, 在原dataframe上改动

二、pandas的数据选择

1. 直接用索引选(不灵活、不推荐) df[ ]

1) 选择‘a'列

>>>data['a'] 

pandas 行列名更改与数据选择

注意:

1. 这样取出的数据类型为 Series

2. 这种方法只能取出一列,不能用数字下标,不能多选或片选, data['a','b'] , data['a':'c'] , data[0]

2)选择'A','B'行

>>>data['A':'B'] 
>>>data[0:2] # 两种方法同一结果

pandas 行列名更改与数据选择

注意:

1. 这样取出的数据类型为 DateFrame

2. 这种方法只能用于片选行,可以用数字下标,不能单独取,即 data['A'] , data['A','B'] , data[1]

2.使用 .loc(推荐) df.loc(),()内参数先行后列,区别行列的取法

1) 取列:

>>>data.loc[:,['a','c']] #图1 需要行全取,再对应指定列

2)取行:

>>>data.loc[['A','B']] #图2 直接指定行

3)取行列交叉值:

>>>data.loc[['A'],['b','c']] #图3 

pandas 行列名更改与数据选择

注意:

1. 区别 df.iloc()

.loc() —— 使用标签 label 作为索引取值

.iloc() —— 使用整数下标 index 作为索引取值,如上面三句可以换成以下三句,输出数据类型有不同

>>>data.iloc[:,[0,2]] # DataFrame
>>>data.iloc[[0,1]] # DataFrame
>>>data.iloc[0,[1,2]] # Series

2. 对于 数字类型的变量,可以使用bool 选取行,列不能用bool,如

>>>data.loc[data.b>5] # DataFrame

pandas 行列名更改与数据选择

>>>data.loc[data.b>5,['c']] #DataFrame 输出为9位置的frame
>>>data.iloc[data.b.values>5,[2]] #DataFrame 输出同上,需要有 .values取值

3. .ix[ ] 可以混用label和index,位置使用同 .loc[ ] .iloc[ ]

以上这篇对pandas的行列名更改与数据选择详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python ---lambda匿名函数介绍

lambda特性:“一个语法,三个特性,四个用法” 一个语法 在Python中,lambda的语法是唯一的。其形式如下:  lambda argument_list:...

python使用if语句实现一个猜拳游戏详解

python使用if语句实现一个猜拳游戏详解

任务要求 在控制台中提示输入石头、剪刀、布,按回车键,然后给出游戏结果。 分析 我们知道在游戏规则中,石头克剪刀,剪刀克布,布克石头。但是这在计算机中并不是很好直接的表示,因此我们分别...

python用quad、dblquad实现一维二维积分的实例详解

背景: python函数库scipy的quad、dblquad实现一维二维积分的范例。需要注意dblquad的积分顺序问题。 代码: import numpy as np from...

python中os操作文件及文件路径实例汇总

本文实例讲述了python中os操作文件及文件路径的方法。分享给大家供大家参考。具体分析如下: python获取文件上一级目录:取文件所在目录的上一级目录 复制代码 代码如下:os.pa...

python3 自动识别usb连接状态,即对usb重连的判断方法

在做自动化测试时,遇到两种情况需要判断usb是否已连接上(注,本文仅针对用adb命令来control手机) 一种是在开测时(前提是同时要测试多台), 希望等待所有设备usb全部识别后同时...