pandas pivot_table() 按日期分多列数据的方法

yipeiwu_com6年前Python基础

如下所示:

date 20170307 20170308
iphone4 2 0
iphone5 2 1
iphone6 0 1

先生成DF数据。

>>> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]])

>>> df.columns=['type','date','num']

>>>df
 type   date num
0 ip4 20170307  1
1 ip4 20170307  1
2 ip5 20170307  1
3 ip5 20170307  1
4 ip6 20170308  1
5 ip5 20170308  1
>>> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)

操作一下就是实现结果。

注:这个函数的参数形式在0.13.x版本里有效,其他版本请参考相应文档。

从0.14.0开始,参数形式升级成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)

以上这篇pandas pivot_table() 按日期分多列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现决策树C4.5算法的示例

Python实现决策树C4.5算法的示例

为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。 之所以这样做是因为...

对python中的for循环和range内置函数详解

对python中的for循环和range内置函数详解

如下所示: 1.for循环和range内置函数配合使用 range函数生成一个从零开始的列表, range(4)表示list:0123 range(1,11,2)表示从1开始到11-...

python的scipy实现插值的示例代码

python的scipy实现插值的示例代码

插值对于一些时间序列的问题可能比较有用。 Show the code directly: import numpy as np from matplotlib import pypl...

Python语言实现将图片转化为html页面

Python语言实现将图片转化为html页面

PIL 图像处理库 PIL(Python Imaging Library) 是 Python 平台的图像处理标准库。不过 PIL 暂不支持 Python3,可以用 Pillow 代替,...

Python的collections模块中的OrderedDict有序字典

如同这个数据结构的名称所说的那样,它记录了每个键值对添加的顺序。 d = OrderedDict() d['a'] = 1 d['b'] = 10 d['c'] = 8 for le...