pandas pivot_table() 按日期分多列数据的方法

yipeiwu_com6年前Python基础

如下所示:

date 20170307 20170308
iphone4 2 0
iphone5 2 1
iphone6 0 1

先生成DF数据。

>>> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]])

>>> df.columns=['type','date','num']

>>>df
 type   date num
0 ip4 20170307  1
1 ip4 20170307  1
2 ip5 20170307  1
3 ip5 20170307  1
4 ip6 20170308  1
5 ip5 20170308  1
>>> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)

操作一下就是实现结果。

注:这个函数的参数形式在0.13.x版本里有效,其他版本请参考相应文档。

从0.14.0开始,参数形式升级成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)

以上这篇pandas pivot_table() 按日期分多列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Django通用视图中的函数包装

用函数包装来处理复杂的数据过滤 另一个常见的需求是按URL里的关键字来过滤数据对象。 之前,我们在URLconf中硬编码了出版商的名字,但是如果我们想用一个视图就显示某个任意指定的出版商...

python re.sub()替换正则的匹配内容方法

如下所示: import re c = re.compile(r'\d') s = 'you1are2welcome' # 用指定的内容,替换正则匹配的内容,也可以指...

Django 2.0版本的新特性抢先看!

前言 2017年12月2日,Django官方发布了2.0版本,成为多年来的第一次大版本提升,那么2.0对广大Django使用者有哪些变化和需要注意的地方呢? 一、Python兼容性 D...

Python实现字符型图片验证码识别完整过程详解

Python实现字符型图片验证码识别完整过程详解

1摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的防火墙功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻。本文介绍了一套字符验证码识别的完整...

Python3爬楼梯算法示例

本文实例讲述了Python3爬楼梯算法。分享给大家供大家参考,具体如下: 假设你正在爬楼梯。需要 n 步你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼...