pandas pivot_table() 按日期分多列数据的方法

yipeiwu_com6年前Python基础

如下所示:

date 20170307 20170308
iphone4 2 0
iphone5 2 1
iphone6 0 1

先生成DF数据。

>>> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]])

>>> df.columns=['type','date','num']

>>>df
 type   date num
0 ip4 20170307  1
1 ip4 20170307  1
2 ip5 20170307  1
3 ip5 20170307  1
4 ip6 20170308  1
5 ip5 20170308  1
>>> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)

操作一下就是实现结果。

注:这个函数的参数形式在0.13.x版本里有效,其他版本请参考相应文档。

从0.14.0开始,参数形式升级成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)

以上这篇pandas pivot_table() 按日期分多列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

opencv实现简单人脸识别

opencv实现简单人脸识别

对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别 参考了网上许多资料  假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。 项...

使用Python实现毫秒级抢单功能

使用Python实现毫秒级抢单功能

目录: 引言 环境 需求分析&前期准备 淘宝购物流程回顾 秒杀的实现 代码梳理 总结 0 引言 年中购物618大狂欢开始了,各大电商又开始了大力...

python打包成so文件过程解析

这篇文章主要介绍了python打包成so文件过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 wget https://bo...

详解python中的文件与目录操作

详解python中的文件与目录操作 一 获得当前路径 1、代码1 >>>import os >>>print('Current directo...

python根据出生日期获得年龄的方法

本文实例讲述了python根据出生日期获得年龄的方法。分享给大家供大家参考。具体如下: 这段代码可以根据用户的出生日期获得其年龄,born参数为date类型 def calculat...