pandas pivot_table() 按日期分多列数据的方法

yipeiwu_com6年前Python基础

如下所示:

date 20170307 20170308
iphone4 2 0
iphone5 2 1
iphone6 0 1

先生成DF数据。

>>> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]])

>>> df.columns=['type','date','num']

>>>df
 type   date num
0 ip4 20170307  1
1 ip4 20170307  1
2 ip5 20170307  1
3 ip5 20170307  1
4 ip6 20170308  1
5 ip5 20170308  1
>>> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)

操作一下就是实现结果。

注:这个函数的参数形式在0.13.x版本里有效,其他版本请参考相应文档。

从0.14.0开始,参数形式升级成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)

以上这篇pandas pivot_table() 按日期分多列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch forward两个参数实例

以channel Attention Block为例子 class CAB(nn.Module): def __init__(self, in_channels, out_c...

Python中装饰器高级用法详解

在Python中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的。在函数定义前加上@xxxx,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已。 场景 假设,有一些工作...

详解numpy矩阵的创建与数据类型

详解numpy矩阵的创建与数据类型

Numpy是python常用的一个类库,在python的使用中及其常见,广泛用在矩阵的计算中,numpy对矩阵的操作与纯python比起来速度有极大的差距。 一、 构造矩阵 矩阵的构造...

解析Python中while true的使用

无限循环 如果条件判断语句永远为 true,循环将会无限的执行下去,如下实例: #!/usr/bin/python # -*- coding: UTF-8 -*- var = 1...

python实现嵌套列表平铺的两种方法

方法一:使用列表推导式 >>> vec = [[1,2,3],[4,5,6],[7,8,9]] >>> get = [num for elem i...