对pytorch网络层结构的数组化详解

yipeiwu_com6年前Python基础

最近再写openpose,它的网络结构是多阶段的网络,所以写网络的时候很想用列表的方式,但是直接使用列表不能将网络中相应的部分放入到cuda中去。

其实这个问题很简单的,使用moduleList就好了。

1 我先是定义了一个函数,用来根据超参数,建立一个基础网络结构

stage = [[3, 3, 3, 1, 1], [7, 7, 7, 7, 7, 1, 1]]
branches_cfg = [[[128, 128, 128, 512, 38], [128, 128, 128, 512, 19]],
    [[128, 128, 128, 128, 128, 128, 38], [128, 128, 128, 128, 128, 128, 19]]]

# used for add two branches as well as adapt to certain stage
def add_extra(i, branches_cfg, stage):
 """
 only add CNN of brancdes S & L in stage Ti at the end of net
 :param in_channels:the input channels & out
 :param stage: size of filter
 :param branches_cfg: channels of image
 :return:list of layers
 """
 in_channels = i
 layers = []
 for k in range(len(stage)):
  padding = stage[k] // 2
  conv2d = nn.Conv2d(in_channels, branches_cfg[k], kernel_size=stage[k], padding=padding)
  layers += [conv2d, nn.ReLU(inplace=True)]
  in_channels = branches_cfg[k]
 return layers

2 然后用普通列表装载他们

conf_bra_list = []
paf_bra_list = []

# param for branch network
in_channels = 128

for i in range(all_stage):
 if i > 0:
  branches = branches_cfg[1]
  conv_sz = stage[1]
 else:
  branches = branches_cfg[0]
  conv_sz = stage[0]

 conf_bra_list.append(nn.Sequential(*add_extra(in_channels, branches[0], conv_sz)))
 paf_bra_list.append(nn.Sequential(*add_extra(in_channels, branches[1], conv_sz)))
 in_channels = 185

3 再然后,使用moduleList方法,把普通列表专成pytorch下的模块

# to list
self.conf_bra = nn.ModuleList(conf_bra_list)
self.paf_bra = nn.ModuleList(paf_bra_list)

4 最后,调用就好了

out_0 = x
# the base transform
for k in range(len(self.vgg)):
 out_0 = self.vgg[k](out_0)

# local name space
name = locals()
confs = []
pafs = []
outs = []

length = len(self.conf_bra)
for i in range(length):
 name['conf_%s' % (i + 1)] = self.conf_bra[i](name['out_%s' % i])
 name['paf_%s' % (i + 1)] = self.paf_bra[i](name['out_%s' % i])
 name['out_%s' % (i + 1)] = torch.cat([name['conf_%s' % (i + 1)], name['paf_%s' % (i + 1)], out_0], 1)
 confs.append('conf_%s' % (i + 1))
 pafs.append('paf_%s' % (i + 1))
 outs.append('out_%s' % (i + 1))

5 顺便装了一下,使用了python局部变量命名空间,name = locals(),其实完全使用普通列表保存变量就好了,高兴就好。

以上这篇对pytorch网络层结构的数组化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python里大整数相乘相关技巧指南

问题 大整数相乘 思路说明 对于大整数计算,一般都要用某种方法转化,否则会溢出。但是python无此担忧了。 Python支持“无限精度”的整数,一般情况下不用考虑整数溢出的问题,而且P...

Python解决两个整数相除只得到整数部分的实例

在python中进行两个整数相除的时候,在默认情况下都是只能够得到整数的值 解决方法: 1. 修改被除数的值为带小数点的形式即可得到浮点值 2.在文件头部引入 from __futu...

使用pytorch进行图像的顺序读取方法

产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中: A文件夹:图片1a,图片2a,图片3a……图片10...

python实现KNN分类算法

python实现KNN分类算法

一、KNN算法简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每...

用python + openpyxl处理excel2007文档思路以及心得

寻觅工具 确定任务之后第一步就是找个趁手的库来干活。 Python Excel上列出了xlrd、xlwt、xlutils这几个包,但是 它们都比较老,xlwt甚至不支持07版以后的exc...