在python中利用KNN实现对iris进行分类的方法

yipeiwu_com6年前Python基础

如下所示:

from sklearn.datasets import load_iris
 
iris = load_iris()
 
print iris.data.shape
 
from sklearn.cross_validation import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size = 0.25, random_state = 33)
 
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
 
ss = StandardScaler()
 
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
 
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
 
print 'The accuracy of K-Nearest Neighbor Classifier is: ', knc.score(X_test, y_test)
 
from sklearn.metrics import classification_report
 
print classification_report(y_test, y_predict, target_names = iris.target_names)

以上这篇在python中利用KNN实现对iris进行分类的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

将字典转换为DataFrame并进行频次统计的方法

将字典转换为DataFrame并进行频次统计的方法

首先将一个字典转化为DataFrame,然后以DataFrame中的列进行频次统计。 代码如下: import pandas as pd a={'one':['A','A','B',...

用uWSGI和Nginx部署Flask项目的方法示例

用uWSGI和Nginx部署Flask项目的方法示例

概况 在开发过程中,我们一般直接用Python命令直接运行Flask程序。这样的运行只适合我们开发,方便我们调试。一旦程序部署到线上,这样运行的Flask程序性能会比较低。可以采用uW...

快速解决docker-py api版本不兼容的问题

docker提供了Python、Go等编程语言的api。最近打算用docker SDK for Python(以下简称docker-py)做点东西,本来以为按照官网上的步骤安装很简单,p...

pandas 空数据处理方法详解

这篇文章主要介绍了pandas 空数据处理方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 方法一:直接删除 1.查看行或列是...

Python打开文件,将list、numpy数组内容写入txt文件中的方法

python保存numpy数据: numpy.savetxt("result.txt", numpy_data); 保存list数据: file=open('data.txt'...