Python使用pandas对数据进行差分运算的方法

yipeiwu_com6年前Python基础

如下所示:

>>> import pandas as pd
>>> import numpy as np

# 生成模拟数据
>>> df = pd.DataFrame({'a':np.random.randint(1, 100, 10),\
     'b':np.random.randint(1, 100, 10)},\
    index=map(str, range(10)))
>>> df
    a    b
0  21  54
1  53  28
2  18  87
3  56  40
4  62  34
5  74  10
6   7  78
7  58  79
8  66  80
9  30  21

# 纵向一阶差分,当前行减去上一行
>>> df.diff()
      a      b
0   NaN   NaN
1  32.0 -26.0
2 -35.0  59.0
3  38.0 -47.0
4   6.0  -6.0
5  12.0 -24.0
6 -67.0  68.0
7  51.0   1.0
8   8.0   1.0
9 -36.0 -59.0

# 横向一阶差分,当前列减去左边的列
>>> df.diff(axis=1)
    a      b
0 NaN  33.0
1 NaN -25.0
2 NaN  69.0
3 NaN -16.0
4 NaN -28.0
5 NaN -64.0
6 NaN  71.0
7 NaN  21.0
8 NaN  14.0
9 NaN  -9.0

# 纵向二阶差分
>>> df.diff(periods=2)
      a      b
0   NaN   NaN
1   NaN   NaN
2  -3.0  33.0
3   3.0  12.0
4  44.0 -53.0
5  18.0 -30.0
6 -55.0  44.0
7 -16.0  69.0
8  59.0   2.0
9 -28.0 -58.0

# 纵向二阶差分,丢弃空值
>>> df.diff(periods=2).dropna()
      a     b
2  -3.0  33.0
3   3.0  12.0
4  44.0 -53.0
5  18.0 -30.0
6 -55.0  44.0
7 -16.0  69.0
8  59.0   2.0
9 -28.0 -58.0

以上这篇Python使用pandas对数据进行差分运算的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Tensorflow使用支持向量机拟合线性回归

Tensorflow使用支持向量机拟合线性回归

支持向量机可以用来拟合线性回归。 相同的最大间隔(maximum margin)的概念应用到线性回归拟合。代替最大化分割两类目标是,最大化分割包含大部分的数据点(x,y)。我们将用相...

python监控linux内存并写入mongodb(推荐)

(需要安装psutil 用来获取服务器资源,以及pymongo驱动)#pip install psutil #pip install pymongo #vim memory_moni...

跟老齐学Python之大话题小函数(1)

开篇就要提到一个大的话题:编程范型。什么是编程范型?引用维基百科中的解释: 复制代码 代码如下: 编程范型或编程范式(英语:Programming paradigm),(范即模范之意,范...

python 通过 socket 发送文件的实例代码

python 通过 socket 发送文件的实例代码

目录结构: client: #!/usr/bin/env python # -*-coding:utf-8 -*- import socket, struct, json down...

详解python字节码

Python对不可变序列进行重复拼接操作效率会很低,因为每次都会生成一个新的对象,解释器需要把原来对象中的元素先复制到新的对象里,然后再追加新的元素。 但是CPython对字符串操作进行...