python+opencv实现高斯平滑滤波

yipeiwu_com5年前Python基础

功能:

创建两个滑动条来分别控制高斯核的size和σσ的大小,这个程序是在阈值分割的那个程序上改动的。阈值分割程序在这
注意:由于σ=0σ=0时,opencv会根据窗口大小计算出σσ,所以,从0滑动σσ的滑动条时,会出现先边清晰又变模糊的现象

python+opencv实现阈值分割
python+opencv实现霍夫变换检测直线

(2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载

代码:

# -*- coding: utf-8 -*- 

import cv2

#两个回调函数
def GaussianBlurSize(GaussianBlur_size):
 global KSIZE 
 KSIZE = GaussianBlur_size * 2 +3
 print KSIZE, SIGMA
 dst = cv2.GaussianBlur(scr, (KSIZE,KSIZE), SIGMA, KSIZE) 
 cv2.imshow(window_name,dst)

def GaussianBlurSigma(GaussianBlur_sigma):
 global SIGMA
 SIGMA = GaussianBlur_sigma/10.0
 print KSIZE, SIGMA
 dst = cv2.GaussianBlur(scr, (KSIZE,KSIZE), SIGMA, KSIZE) 
 cv2.imshow(window_name,dst)

#全局变量
GaussianBlur_size = 1
GaussianBlur_sigma = 15

KSIZE = 1
SIGMA = 15
max_value = 300
max_type = 6
window_name = "GaussianBlurS Demo"
trackbar_size = "Size*2+3"
trackbar_sigema = "Sigma/10"

#读入图片,模式为灰度图,创建窗口
scr = cv2.imread("G:\homework\lena.bmp",0)
cv2.namedWindow(window_name)

#创建滑动条
cv2.createTrackbar( trackbar_size, window_name, \
     GaussianBlur_size, max_type, GaussianBlurSize )
cv2.createTrackbar( trackbar_sigema, window_name, \
     GaussianBlur_sigma, max_value, GaussianBlurSigma )
#初始化
GaussianBlurSize(1)
GaussianBlurSigma(15)

if cv2.waitKey(0) == 27: 
 cv2.destroyAllWindows()

调用:

需要把图片和cv2.pyd与GaussianBlur.py放在同一文件夹下

>>> import os
>>> os.chdir("g:\homework")
>>> import GaussianBlur
5 15
5 1.5
5 1.6
5 1.9
5 2.4
5 2.5
5 2.9
5 3.0
5 3.3
5 3.6
5 3.9
5 4.1
5 4.2
5 4.3
5 4.4
5 4.5
5 4.6
5 4.7
5 4.8

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python批量修改图片大小的方法

本文实例为大家分享了python批量修改图片大小的具体代码,供大家参考,具体内容如下 引用的模块 from PIL import Image Image的使用 def res...

Django 中使用流响应处理视频的方法

Django 中使用流响应处理视频的方法

起步 利用 html5 的 <video> 标签可以播放: <video width="320" height="240" controls> <so...

自适应线性神经网络Adaline的python实现详解

自适应线性神经网络Adaline的python实现详解

自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。 相对于感知器,采用了f(z)=z的激活函数,属于连续函数。 代价函数为LMS函数,最小均...

python Django中models进行模糊查询的示例

多个字段模糊查询, 括号中的下划线是双下划线,双下划线前是字段名,双下划线后可以是icontains或contains,区别是是否大小写敏感,竖线是或的意思 #搜索功能 @csrf_...

关于tensorflow的几种参数初始化方法小结

在tensorflow中,经常会遇到参数初始化问题,比如在训练自己的词向量时,需要对原始的embeddigs矩阵进行初始化,更一般的,在全连接神经网络中,每层的权值w也需要进行初始化。...